Although PMMA can be exposed using a variety of exposure sources, deep-UV at 254 nm is of interest because it is relatively inexpensive. Additionally, deep-UV sources can be readily scaled to large area exposures. Moreover, this paper will show that depths of over 100 μm can be created in commercial grade PMMA using an uncollimated source. These depths are sufficient for creating microfluidic channels. This paper will provide measurements of the dissolution depth of commercial grade PMMA as a function of the exposure dose and etch time, using an IPA:H 2 O developer. Additionally, experiments were run to characterize the dependence of the dissolution rate on temperature and agitation. The patterned substrates were thermally bonded to blank PMMA pieces to enclose the channels and ports were drilled into the reservoirs. The resulting fluidic systems were then tested for leakage. The work herein presents the patterning, development and system behaviour of a complete microfluidics system based on commercial grade PMMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.