ECV measurement with CMR reflects myocardial collagen content in DCM. Therefore, CMR-based assessment of ECV may have the potential to serve as a non-invasive tool for the quantification of diffuse MF in order to monitor therapy response and aid risk stratification in different stages of DCM.
Evaluation of proliferative activity is a cornerstone in the classification of endocrine tumors; in pulmonary carcinoids, the mitotic count delineates typical carcinoid (TC) from atypical carcinoid (AC). Data on the reproducibility of manual mitotic counting and other methods of proliferation index evaluation in this tumor entity are sparse. Nine experienced pulmonary pathologists evaluated 20 carcinoid tumors for mitotic count (hematoxylin and eosin) and Ki-67 index. In addition, Ki-67 index was automatically evaluated with a software-based algorithm. Results were compared with respect to correlation coefficients (CC) and kappa values for clinically relevant grouping algorithms. Evaluation of mitotic activity resulted in a low interobserver agreement with a median CC of 0.196 and a median kappa of 0.213 for the delineation of TC from AC. The median CC for hotspot (0.658) and overall (0.746) Ki-67 evaluation was considerably higher. However, kappa values for grouped comparisons of overall Ki-67 were only fair (median 0.323). The agreement of manual and automated Ki-67 evaluation was good (median CC 0.851, median kappa 0.805) and was further increased when more than one participant evaluated a given case. Ki-67 staining clearly outperforms mitotic count with respect to interobserver agreement in pulmonary carcinoids, with the latter having an unacceptable low performance status. Manual evaluation of Ki-67 is reliable, and consistency further increases with more than one evaluator per case. Although the prognostic value needs further validation, Ki-67 might perspectively be considered a helpful diagnostic parameter to optimize the separation of TC from AC.
BackgroundProliferation may predict response to neoadjuvant therapy of breast cancer and is commonly assessed by manual scoring of slides stained by immunohistochemistry (IHC) for Ki-67 similar to ER and PgR. This method carries significant intra- and inter-observer variability. Automatic scoring of Ki-67 with digital image analysis (qIHC) or assessment of MKI67 gene expression with RT-qPCR may improve diagnostic accuracy.MethodsKi-67 IHC visual assessment was compared to the IHC nuclear tool (AperioTM) on core biopsies from a randomized neoadjuvant clinical trial. Expression of ESR1, PGR and MKI67 by RT-qPCR was performed on RNA extracted from the same formalin-fixed paraffin-embedded tissue. Concordance between the three methods (vIHC, qIHC and RT-qPCR) was assessed for all 3 markers. The potential of Ki-67 IHC and RT-qPCR to predict pathological complete response (pCR) was evaluated using ROC analysis and non-parametric Mann-Whitney Test.ResultsCorrelation between methods (qIHC versus RT-qPCR) was high for ER and PgR (spearman´s r = 0.82, p < 0.0001 and r = 0.86, p < 0.0001, respectively) resulting in high levels of concordance using predefined cut-offs. When comparing qIHC of ER and PgR with RT-qPCR of ESR1 and PGR the overall agreement was 96.6 and 91.4%, respectively, while overall agreement of visual IHC with RT-qPCR was slightly lower for ER/ESR1 and PR/PGR (91.2 and 92.9%, respectively). In contrast, only a moderate correlation was observed between qIHC and RT-qPCR continuous data for Ki-67/MKI67 (Spearman’s r = 0.50, p = 0.0001). Up to now no predictive cut-off for Ki-67 assessment by IHC has been established to predict response to neoadjuvant chemotherapy. Setting the desired sensitivity at 100%, specificity for the prediction of pCR (ypT0ypN0) was significantly higher for mRNA than for protein (68.9% vs. 22.2%). Moreover, the proliferation levels in patients achieving a pCR versus not differed significantly using MKI67 RNA expression (Mann-Whitney p = 0.002), but not with qIHC of Ki-67 (Mann-Whitney p = 0.097) or vIHC of Ki-67 (p = 0.131).ConclusionDigital image analysis can successfully be implemented for assessing ER, PR and Ki-67. IHC for ER and PR reveals high concordance with RT-qPCR. However, RT-qPCR displays a broader dynamic range and higher sensitivity than IHC. Moreover, correlation between Ki-67 qIHC and RT-qPCR is only moderate and RT-qPCR with MammaTyper® outperforms qIHC in predicting pCR. Both methods yield improvements to error-prone manual scoring of Ki-67. However, RT-qPCR was significantly more specific.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-017-3111-1) contains supplementary material, which is available to authorized users.
We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, $$^7$$ 7 Be, $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep. The precision of the $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep components is hindered by the double-beta decay of $$^{136}$$ 136 Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, $$\sin ^2\theta _w$$ sin 2 θ w , and the electron-type neutrino survival probability, $$P_{ee}$$ P ee , in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and $$^7$$ 7 Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5$$\sigma $$ σ significance, independent of external measurements from other experiments or a measurement of $$^8$$ 8 B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $$^{131}$$ 131 Xe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.