Apical membrane Na/H exchange is a principal mechanism of renal proximal tubule Na absorption and H secretion, and thick ascending limb H secretion. Based on current data on Na/H exchanger isoforms (NHE-1 to 5), NHE-3 is the likeliest candidate for the apical membrane isoform. The present study localizes NHE-3 in rat kidney using polyclonal antisera against cytoplasmic epitopes of rat NHE-3. These antisera recognized an approximately 87 kD protein in Na/H exchanger-deficient cells transfected with the rat NHE-3 gene but not in mock-transfected cells. All antisera labeled an approximately 87 kD protein in plasma membranes from cortex and outer medulla. Fractionation of cortical membranes showed labeling in apical but not basolateral membranes. Cross linking studies suggested existence of oligomeric forms of the transporter. Immunohistochemistry showed strong staining of the apical membrane of S1 convoluted, and S2 convoluted tubule with lesser staining of the S2 straight tubule and absent staining of S3. Weak staining was observed in thin descending limbs in the inner stripe and intense staining was seen in the apical membrane of medullary and cortical thick ascending limbs. NHE-3 staining was absent in the remainder of the nephron. In summary, NHE-3 is the isoform responsible for NaCl and NaHCO3 absorption in the proximal convoluted tubule, and NaHCO absorption in the thick ascending limb. In the S3 proximal tubule and the distal convoluted tubule, apical membrane Na/H exchange activity is likely mediated by other isoform(s) of the NHE family.
We have recently identified a rat kidney cortex Na-dependent transport system for phosphate (P(i)) by expression cloning (NaP(i)-2) (S. Magagnin, A. Werner, D. Markovich, V. Sorribas, G. Stange, J. Biber, and H. Murer. Proc. Natl. Acad. Sci. USA 90: 5979, 1993). In this study we have used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to establish the sites of expression of the NaP(i)-2-related mRNA and protein. RT-PCR was performed with single microdissected nephron segments. From these experiments we conclude that NaP(i)-2 mRNA is predominantly expressed in the proximal tubules of superficial and deep nephrons. No NaP(i)-2 mRNA was detected in the thick ascending limb of Henle's loop; however, faint NaP(i)-2 related PCR products were also observed in collecting ducts. Expression of the NaP(i)-2 protein was examined with the use of polyclonal antibodies raised against synthetic NaP(i)-2-derived peptides. Strong specific anti-NaP(i)-2 antiserum-mediated immunofluorescence was found in the convoluted part of proximal tubules and gradually decreased along the straight part. Immunofluorescence indicated that the NaP(i)-2 protein is present in the brush border of proximal tubular cells. In addition, NaP(i)-2-specific immunofluorescence was also observed in subapical vesicles. The described distribution of the NaP(i)-2 protein is in agreement with previously described nephron sites of P(i) reabsorption in the rat kidney and therefore suggests that the NaP(i)-2 transport system represents an Na-P(i) cotransporter involved in proximal tubular apical transport of phosphate.
Recently, the cDNA for a Na-P(i) cotransport system of rat kidney cortex (NaPi-2) has been identified by expression cloning. Using polyclonal antibodies raised against this renal Na-P(i) cotransport system, and using the polymerase chain reaction after reverse transcription of mRNA in microdissected nephron segments, we recently demonstrated that NaPi-2-related mRNA and protein is expressed in the brush-border membranes (BBM) of the proximal tubules of rat kidney. The purpose of the present study was to study the cellular mechanisms involved in adaptation of rat renal Na-P(i) cotransporter to acute and chronic alterations in dietary P(i). Compared with rats fed chronically (7 days) a high-P(i) diet (1.2%), in rats fed chronically a low-P(i) (0.1%) diet the 3.4-fold increase in BBM Na-P(i) cotransport rate (chronic upregulation) was associated with a 2.2-fold increase in renal cortical NaPi-2 mRNA and a 4.9-fold increase in BBM NaPi-2 protein abundances. In contrast, compared with rats fed chronically (7 day) a high-P(i) diet, in rats fed acutely (2 h) a low-P(i) diet the 1.5-fold increase in Na-P(i) cotransport rate (acute upregulation) was associated with a 1.8-fold increase in NaPi-2 protein but no change in NaPi-2 mRNA abundance. Similarly, compared with rats fed chronically a low-P(i) diet, in rats fed acutely (2 h) a high-P(i) diet the 1.9-fold decrease in Na-P(i) cotransport rate (acute downregulation) was associated with a 3.8-fold decrease in NaPi-2 protein but no change in NaPi-2 mRNA abundance.(ABSTRACT TRUNCATED AT 250 WORDS)
The inhibitory action of parathyroid hormone (PTH) on Pi reabsorption in the renal proximal tubule is accompanied by a specific decrease in Na-Pi cotransport at the apical brush-border membrane (BBM). It is not known whether this decrease represents decreased activity of Na-Pi cotransporters already present in the BBM or whether the number of cotransporters is decreased. The present study of the molecular mechanism of PTH action made use of a specific cDNA probe and antiserum to a rat renal Na-Pi cotransporter (NaPi-2). Three groups of rats were used: intact controls, chronically parathyroidectomized (PTX), and PTX rats treated acutely (2 h) with bovine PTH-(1--34). Na-Pi cotransport by isolated renal BBM vesicles was increased to 1,315 +/- 44 in PTX rats, compared with 721 +/- 94 pmol.mg-1.10 s-1 in controls (P < 0.002), and was returned to control levels by PTH. Western blots of these BBM showed that PTX caused a 2.8-fold increase in NaPi-2 protein content, which was reduced to control levels by PTH. Immunohistochemistry of perfusion-fixed kidneys showed NaPi-2-specific immunofluorescence exclusively in apical BBM of proximal tubules. Expression of NaPi-2 protein at these sites was increased in PTX rats and decreased after PTH treatment. Northern analysis of total RNA showed that the abundance of NaPi-2-specific mRNA was not changed by PTX but there was a small decrease in response to PTH. The data indicate that PTH regulation of renal Na-Pi cotransport is determined by changes in expression of NaPi-2 protein in the renal BBM.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.