In this paper, we introduce a new method for image smoothing based on a fourth-order PDE model. The method is tested on a broad range of real medical magnetic resonance images, both in space and time, as well as on nonmedical synthesized test images. Our algorithm demonstrates good noise suppression without destruction of important anatomical or functional detail, even at poor signal-to-noise ratio. We have also compared our method with related PDE models.
In this paper, we propose a PDE-based level set method. Traditionally, interfaces are represented by the zero level set of continuous level set functions. Instead, we let the interfaces be represented by discontinuities of piecewise constant level set functions. Each level set function can at convergence only take two values, i.e., it can only be 1 or -1; thus, our method is related to phase-field methods. Some of the properties of standard level set methods are preserved in the proposed method, while others are not. Using this new method for interface problems, we need to minimize a smooth convex functional under a quadratic constraint. The level set functions are discontinuous at convergence, but the minimization functional is smooth. We show numerical results using the method for segmentation of digital images.
Abstract. In this paper we propose a variant of the level set formulation for identifying curves separating regions into different phases. In classical level set approaches, the sign of n level set functions are utilized to identify up to 2 n phases. The novelty in our approach is to introduce a piecewise constant level set function and use each constant value to represent a unique phase. If 2 n phases should be identified, the level set function must approach 2 n predetermined constants. We just need one level set function to represent 2 n unique phases, and this gains in storage capacity. Further, the reinitializing procedure requested in classical level set methods is superfluous using our approach. The minimization functional for our approach is locally convex and differentiable and thus avoids some of the problems with the nondifferentiability of the Delta and Heaviside functions. Numerical examples are given, and we also compare our method with related approaches.
A noise removal technique using partial differential equations (PDEs) is proposed here. It combines the Total Variational (TV) filter with a fourth-order PDE filter. The combined technique is able to preserve edges and at the same time avoid the staircase effect in smooth regions. A weighting function is used in an iterative way to combine the solutions of the TV-filter and the fourth-order filter. Numerical experiments confirm that the new method is able to use less restrictive time step than the fourth-order filter. Numerical examples using images with objects consisting of edge, flat and intermediate regions illustrate advantages of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.