Due to the increased popularity of augmented and virtual reality experiences, the interest in capturing the real world in multiple dimensions and in presenting it to users in an immersible fashion has never been higher. Distributing such representations enables users to freely navigate in multi-sensory 3D media experiences. Unfortunately, such representations require a large amount of data, not feasible for transmission on today's networks. Efficient compression technologies well adopted in the content chain are in high demand and are key components to democratize augmented and virtual reality applications. The Moving Picture Experts Group, MPEG, as one of the main standardization groups dealing with multimedia, identified the trend and started recently the process of building an open standard for compactly representing 3D point clouds, which are the 3D equivalent of the very well-known 2D pixels. This paper introduces the main developments and technical aspects of this ongoing standardization effort.
In recent years, 3D point clouds have enjoyed a great popularity for representing both static and dynamic 3D objects. When compared to 3D meshes, they offer the advantage of providing a simpler, denser and more close-to-reality representation. However, point clouds always carry a huge amount of data. For a typical example of a point cloud with 0.7 million points per 3D frame at 30 fps, the point cloud raw video needs a bandwidth around 500MB/s. Thus, efficient compression methods are mandatory for ensuring the storage/transmission of such data, which include both geometry and attribute information. In the last years, the issue of 3D point cloud compression (3D-PCC) has emerged as a new field of research. In addition, an ISO/MPEG standardization process on 3D-PCC is currently ongoing. In this paper, a comprehensive overview of the 3D-PCC state-of-the-art methods is proposed. Different families of approaches are identified, described in details and summarized, including 1D traversal compression, 2D-oriented techniques, which take leverage of existing 2D image/video compression technologies and finally purely 3D approaches, based on a direct analysis of the 3D data. CCS CONCEPTS • Computing methodologies → Point-based models; • Information systems → Data compression; • General and reference → Surveys and overviews.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.