An equiatomic MoNbTaTiVZr refractory high-entropy alloy (HEA) produced by arc melting was processed by high-pressure torsion (HPT) at room temperature. Thermodynamic calculations and experimental results indicated a dual-phase microstructure composed of about 85% BCC Zr-depleted and 15% BCC Zr-rich phase in the as-cast condition. HPT causes grain refinement and an increase in dislocation density without the formation of new phases. After four revolutions, the Zr-depleted phase was hardened to $$\sim $$
∼
540 HV, while the Zr-rich phase exhibited softening with a decrease in hardness to $$\sim $$
∼
480 HV. The occurrence of a vortex-like microstructure and the analysis of elemental concentrations indicated a shear-induced mechanical homogenization, which was supposed to be the cause of the observed softening.
In this work, multi-principal element alloys (MPEAs) with the five base elements Al, Cr, Fe, Ni and Ti plus elements in minor amounts were produced by powder metallurgy and their microstructure and elastic behavior were analyzed via light and scanning electron microscopy, electron backscatter diffraction (EBSD) and synchrotron X-ray diffraction. The two studied compositions are an MPEA with Al, Cr, Fe, Ni and Ti in equimolar ratio as well as a similar composition with a concentration of Ti reduced to 10 mol%. The goal is to analyze the microstructural behavior of these compositions during macroscopic loading in dependence of chemical composition and phases present. Analysis via synchrotron X-ray diffraction predicts the presence of body-centered cubic phases, Full Heusler-phases and C14_Laves-phases in both compositions, MPEA5 and MPEA_Ti10. Synchrotron X-ray diffraction offers the possibility to monitor the deformation of these phases during macroscopic loading of specimens. Thermodynamic calculations of stable phases predicted a microstructure of MPEA5 consisting of body-centered cubic and Full Heusler-phases at room temperature. Further calculation and X-ray diffraction experiments showed the stabilization of minor amounts of C14_Laves-phase ($$\hbox {Fe}_2\hbox {Ti}$$
Fe
2
Ti
) at room temperature with a decreasing amount of Ti. MPEA5 showed the development of long and un-branched cracks during compressive testing, which resulted in a remarkable decrease in lattice-dependent elastic moduli. MPEA_Ti10 exhibited branched cracks during compression tests. Also, the lattice-dependent elastic moduli of MPEA_Ti10 did not change notably during the compression tests. In both compositions, the Full Heusler-phase showed the lowest lattice-dependent elastic moduli, hence taking the largest share of the overall deformation among all phases present in the materials under macroscopic loading.
A modified quenching and deformation dilatometer is now in operation at the Heinz Maier‐Leibnitz Zentrum neutron center. It is customized for running neutron scattering measurements during the temperature/deformation treatment of the sample, in particular neutron diffraction (phase, texture, lattice strain) and neutron small angle scattering. Further details can be found in the article number http://doi.wiley.com/10.1002/adem.202100163 by Xiaohu Li, Weimin Gan, and co‐workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.