Abstract-Total Ionizing Dose (TID) effects are studied on a radiation hardened by design (RHBD) 256x256-pixel CMOS image sensor (CIS) demonstrator developed for ITER remote handling by using X and γ-rays irradiations. The (color) imaging capabilities of the RHBD CIS are demonstrated up to 10 MGy(SiO2), 1 Grad(SiO2), validating the radiation hardness of most of the designed integrated circuit. No significant sensitivity (i.e. responsivity and color filter transmittance) or readout noise degradation is observed. The proposed readout chain architecture allows achieving a maximum output voltage swing larger than 1 V at 10 MGy(SiO2). The influence of several pixel layout (the gate oxide thickness, the gate overlap distance and the use of an in-pixel P+ ring) and manufacturing process parameters (photodiode doping profile, process variation) on the radiation induced dark current increase is studied. The nature of the dark current draining mechanism used to cancel most of the radiation induced degradation is also discussed and clarified.
Abstract-MOSFETs variability in irradiated CIS up to 10 MGy(SiO 2) is statistically investigated on about 65000 devices. Different variability sources are identified and the role played by the transistors composing the readout chain is clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.