Today file synchronizers are tools often used to facilitate collaboration scenarios and data management across multiple devices. They replicate the file system, e.g. from a cloud storage to a device disk, achieving convergence by only transmitting detected changes. A popular variant available in a plethora of products are state-based file synchronizers such as the Dropbox client. They detect operations by computing the difference between a previously persisted state and the respective current state. However, state-based synchronization is difficult because we need to detect and resolve conflicting operations as well as the propagation order of non-conflicting operations. This work presents Syncpal, an algorithm that reconciles two divergent file systems using an iterative approach. It first handles conflicts, one at a time, making sure that resolving one conflict does not negatively affect other ones, while avoiding conflicts whenever possible. It then finds order dependencies (and breaks cycles) between the remaining non-conflicting operations to avoid the violation of operation preconditions during propagation. This work is relevant for file synchronizer researchers and developers who want to improve their products with an algorithm whose iterative nature reduces the overall complexity and the probability of bugs. In addition to our proposed algorithm and a formal analysis of the underlying problem, our validation approach for the proposed algorithm includes the presentation of a fullscale implementation of an exemplary file system model.
The advent of Building Information Modelling (BIM) provides geometry data that can be easily used for visualisations. We present six demonstrators made from the same data using similar workflows. They cover different categories of mobile devices, ranging from head-mounted displays to smartphones and tablets with inside-out positional tracking. They showcase cross-media visualisations depending on the device capabilities, which vary from a sophisticated car-based AR-setup, over wired and wireless VR, to see-through AR on smart glasses, and video-based AR on tablets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.