Nowadays, the damage severity evaluation in mechanical structures is mostly performed by analyzing the natural frequency shift. The non-isotropic materials, as the multi-layered ones, are widespread in industrial applications, due to their interesting physicmechanical properties. Thus, a deeper approach of multi-layered beams becomes an important request in the research domain. This paper introduces a damage severity estimator by expressing the crack evolution as a function of stored energy. It is well known that the energy stored in a beam without damage is greater than the energy of that damaged beam. As a consequence, the beam deflection can be related to the stored energy. In this regard, the possibility to split the damage localization and the damage severity assessment has been proven, and also the graphical evolution of the natural frequency shift has been achieved as a function of the crack depth. The results achieved by the finite element method (FEM) and experimental tests are given in tables and graphics. For the first five vibration modes, a comparison was made between frequencies accomplished by analytical, numerical and experimental analyses, in order to give more credibility to the accuracy of the research data presented in this paper.
This paper introduces a method to identify damages in beam-like structures by analyzing the natural frequency changes of the first six transversal vibration modes. A correlation between the damage location and frequency change is established for each mode separately, by considering the modal strain energy stored in that location. The mathematical relation describing this correlation is used to characterize the dynamic behavior of a beam with a damage of known position and to derive its Damage Location Indicator (DLI) as a six-term vector. The method consists in comparing the vectors describing the damage at any possible location along the beam with the Damage Signature (DS), which is achieved from the measurements that compare the beam's frequencies in healthy and damaged state. A modified Kullback-Leibler Divergence is used to assess the damage location. In order to permit early damage assessment, an improved frequency evaluation algorithm was developed. It is based on signal truncation and consequent spectral lines rearrangement, in order to accurately find the strongest spectral components. The effectiveness of the proposed method is demonstrated by simulations and experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.