Damage detection based on modal parameter changes has become popular in the last few decades. Nowadays, there are robust and reliable mathematical relations available to predict natural frequency changes if damage parameters are known. Using these relations, it is possible to create databases containing a large variety of damage scenarios. Damage can be thus assessed by applying an inverse method. The problem is the complexity of the database, especially for structures with more cracks. In this paper, we propose two machine learning methods, namely the random forest (RF), and the artificial neural network (ANN), as search tools. The databases we developed contain damage scenarios for a prismatic cantilever beam with one crack and ideal and non-ideal boundary conditions. The crack assessment was made in two steps. First, a coarse damage location was found from the networks trained for scenarios comprising the whole beam. Afterwards, the assessment was made involving a particular network trained for the segment of the beam on which the crack was previously found. Using the two machine learning methods, we succeeded in estimating the crack location and severity with high accuracy for both simulation and laboratory experiments. Regarding the location of the crack, which was the main goal of the practitioners, the errors were less than 0.6%. Based on these achievements, we concluded that the damage assessment we propose, in conjunction with the machine learning methods, is robust and reliable.
The paper presents a method to detect, locate and evaluate damage severity of Euler-Bernoulli beams, based on how natural frequencies change due to damages. Previous researches that dealt with this issue focused only on quantitative changes, mainly considering a global stiffness reduction in the damaged area. The authors have contrived a correlation between the strain energy stored in a segment of the beam, which is proportional with the mode shape curvature of a considered vibration mode at that location, and the frequency change for this mode if damage appears on that segment. This reveals that for an element of the beam, the stiffness change of a certain mode for a given damage varies between zero and a maximum, depending solely on the location of that element. Moreover, one has to consider different stiffness changes for a damaged element placed on a certain location, depending on the vibration mode. This rule how frequencies of various modes change due to damage are used to create patterns, based on relative frequency shifts, which characterize damaged beams in respect to defect location and severity. The method was validated by numerous experiments, which proved its accuracy and reliability.
A direct approach for the calculation of the natural frequencies and vibration mode shapes of a perfectly clamped-free beam with additional stepwise eccentric distributed masses is developed, along with its corresponding equations. Firstly there is contrived influence of a mass, located on a given position along the beam, upon the modal energies, via an energy analysis method. Secondly, the mass participation coefficient is defined as a function of the mass location and the bending vibration mode number. The proposed coefficient is employed to deduce the mathematical relation for the frequencies of beams with supplementary eccentric loads, generally available for any boundary conditions. The accuracy of the obtained mathematical relation was examined in comparison with the numerical simulation and experimental results for a cantilever beam. For this aim, several finite element models have been developed, individualized by the disturbance extent and the mass increase or decrease. Also, one real system was tested. The comparisons between the analytically achieved results and those obtained from experiments proved the accuracy of the developed mathematical relation.
The paper presents a method to assess damages in beams, based on how natural frequencies of bending vibration modes change due to damages. The authors have contrived a correlation between the strain energy stored in a segment of the beam, which is proportional with the mode shape curvature of a considered vibration mode at that location, and the frequency change for this mode if damage appears on that segment. For a certain mode, damages placed on inflection points of the mode shape curvature, where the strain energy is null, will not produce changes in frequency, while damages placed on maxima will produce the highest changes in frequency. For other locations of damage, the frequency shift will be proportional with the mode shape curvature of the vibration mode at that location. We worked out a general relation, which gives the frequency shift of all bending modes, with one coefficient depending on the support type. To evaluate damages, we determine analytically the relative frequency shift as ratio between the frequency change and the natural frequency of the undamaged beam, for the first ten vibration modes, considering various damage depths and locations. Comparison of results with that obtained by measurements on the real beam permits detection, location and assessment of damages in beams with high accuracy. The method was validated by experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.