In this article, some practical software optimization methods for implementations of fractional order backward difference, sum, and differintegral operator based on Grünwald–Letnikov definition are presented. These numerical algorithms are of great interest in the context of the evaluation of fractional-order differential equations in embedded systems, due to their more convenient form compared to Caputo and Riemann–Liouville definitions or Laplace transforms, based on the discrete convolution operation. A well-known difficulty relates to the non-locality of the operator, implying continually increasing numbers of processed samples, which may reach the limits of available memory or lead to exceeding the desired computation time. In the study presented here, several promising software optimization techniques were analyzed and tested in the evaluation of the variable fractional-order backward difference and derivative on two different Arm® Cortex®-M architectures. Reductions in computation times of up to 75% and 87% were achieved compared to the initial implementation, depending on the type of Arm® core.
The growing number of operations in implementations of the non-local fractional differentiation operator is cumbersome for real applications with strict performance and memory storage requirements. This demands use of one of the available approximation methods. In this paper, the analysis of the classic integer- (IO) and fractional-order (FO) models of the brushless DC (BLDC) micromotor mounted on a steel rotating arms, and next, the discretization and efficient implementation of the models in a microcontroller (MCU) is performed. Two different methods for the FO model are examined, including the approximation of the fractional-order operator s ν ( ν ∈ R ) using the Oustaloup Recursive filter and the numerical evaluation of the fractional differintegral operator based on the Grünwald–Letnikov definition and Short Memory Principle. The models are verified against the results of several experiments conducted on an ARM Cortex-M7-based STM32F746ZG unit. Additionally, some software optimization techniques for the Cortex-M microcontroller family are discussed. The described steps are universal and can also be easily adapted to any other microcontroller. The values for integral absolute error (IAE) and integral square error (ISE) performance indices, calculated on the basis of simulations performed in MATLAB, are used to evaluate accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.