The progressive liquid-phase layer-by-layer (LbL) growth of anisotropic multicomponent layer-based porous coordination polymers (PCPs) of the general formula [M(L)(P)(0.5)] (M: Cu(2+), Zn(2+); L: dicarboxylate linker; P: dinitrogen pillar ligand) was investigated by using either pyridyl- or carboxyl-terminated self-assembled monolayers (SAMs) on gold substrates as templates. It was found that the deposition of smooth, highly crystalline, and oriented multilayer films of these PCPs depends on the conditions at the early growth cycles. In the case of a two-step process with an equimolar mixture of L and P, growth along the [001] direction is strongly preferred. However, employing a three-step scheme with full separation of all components allows deposition along the [100] direction on carboxyl-terminated SAMs. Interestingly, the growth of additional layers on top of previously grown oriented seeding layers proved to be insensitive to the particular growth scheme and full retention of the initial orientation, either along the [001] or [100] direction, was observed. This homo- and heteroepitaxial LbL growth allows full control over the orientation and the layer sequence, including introduction of functionalized linkers and pillars.
Zinc–zinc interactions on nickel and palladium centers are highly dependent on the co-ligands. These dependencies are also found for the formation of dihydrogen vs. dihydride complexes and underline the analogy [Zn2Cp*2] ↔ H2.
The icosahedral complex [Mo(ZnMe)(9)(ZnCp*)(3)] is discussed as the prototype for a whole family of high-coordinate, metal-rich compounds [M(ZnR)(n)] and [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; for the same metal M). In contrast to other highly coordinate complexes of classic, monodentate (nonchelating) nonmetal atom ligator ligands, for the (weakly) bonding metal atom ligators ZnR and GaR, attractive ligand-ligand interactions play an important role. The structures of the compounds were evaluated by the method of continuous-shape measures, and the bonding situation of models (R = H) was analyzed on the density functional level of theory. The structures and coordination polyhedra of [M(M'R)(n)] (M' = Zn, Ga) turned out to be independent of the central metal or the nature of the metals M' in the ligand shell, and the resulting molecular orbital schemes vary only slightly as a result of the different symmetries, however resulting in the same coordination polyhedra (structures) for all complexes. This result may be viewed as a molecular representation for the situation in extended solid-state intermetallic phases of the Hume-Rothery type.
Near-IR emissive lanthanoid cryptates have been developed with the lanthanoids Yb, Nd, Er, and Pr by designing a fully deuterated ligand environment that greatly suppresses multiphonon nonradiative deactivation pathways through avoidance of high-energy oscillators and rigidification of the ligand backbone. Strong luminescence is observed in CD(3)CN for all four lanthanoids. Luminescence lifetimes in CD(3)CN are among the highest values for molecular complexes in solution reported so far (Yb, τ(obs) = 79 μs; Nd, τ(obs) = 3.3 μs). For the ytterbium cryptate, the highest luminescence lifetime can be obtained using CD(3)OD (τ(obs) = 91 μs) and even in nondeuterated CH(3)CN the lifetime is still unusually high (τ(obs) = 53 μs). X-ray crystallography and (1)H NMR analysis of the corresponding nondeuterated lutetium cryptate suggest that the inner coordination sphere in solution is completely saturated by the octadentate cryptand and one chloride counterion. All lanthanoid cryptates remarkably show complete stability during reversed-phase HPLC measurements under strongly acidic conditions.
Reactions of homoleptic isonitrile ligated complexes or clusters of d(10)-metals with the potent carbenoid donor ligand GaCp* are presented (Cp* = pentamethylcyclopentadienyl). Treatment of [Ni4(CNt-Bu)7], [{M(CNR)2}3] (M = Pd, Pt) and [Pd(CNR)2Me2] (R = t-Bu, Ph) with suitable amounts of GaCp* lead to the formation of the heteroleptic, tri- and tetranuclear clusters [Ni4(CNt-Bu)7(GaCp*)3] (1), [{M(CNt-Bu)}3(GaCp*)4] (M = Pd: 2a, Pt: 2b), and [{Pd(CNR)}4(GaCp*)4] (R = t-Bu: 3a, Ph: 3b). The reactions involve isonitrile substitution reactions, GaCp* addition reactions, and cluster formation reactions. The new compounds were investigated for their ability to undergo Ga/Zn exchange reactions when treated with ZnMe2. The novel tetranuclear Zn-rich clusters [Ni4GaZn7(Cp*)2Me7(CNt-Bu)6] (4) and [{Pd(CNR)}4(ZnCp*)4(ZnMe)4] (R = t-Bu: 5a, Ph: 5b) were obtained and isolated. The electronic situation and geometrical arrangement of atoms of all compounds will be presented and discussed. All new compounds are characterized by solution (1)H, (13)C NMR and IR spectroscopy, elemental analysis (EA), liquid injection field desorption ionization mass spectrometry (LIFDI-MS) as well as single crystal X-ray crystallography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.