Naczk, M, Naczk, A, Brzenczek-Owczarzak, W, Arlet, J, and Adach, Z. Impact of inertial training on strength and power performance in young active men. J Strength Cond Res 30(8): 2107–2113, 2016—This study evaluated how 5 weeks of inertial training using 2 different loads influenced strength and power performance. Fifty-eight male physical education students were randomly divided into training and control groups. The 2 training groups (T0 and T10) performed inertial training 3 times per week for 5 weeks using the new Inertial Training and Measurement System (ITMS). Each training session included 3 exercise sets involving the knee extensors muscles. The T0 group used only the mass of the ITMS flywheel (19.4 kg), whereas the T10 group had an additional 10 kg on the flywheel. Before and after training, we evaluated maximum force and power of knee extensors muscles, countermovement jump (CMJ), squat jump (SJ), maximal power output achieved during ergometer test PVT, electromyography of quadriceps, and muscle mass. In T0 and T10, respectively, ITMS training induced significant increases in muscle force (25.2 and 23.3%), muscle power (33.2 and 27%), CMJ (3.8 and 6.7%), SJ (2.2 and 6.1%), PVT (8 and 7.4%), and muscle mass (9.8 and 15%). The changes did not significantly differ between T0 and T10. A 16% significant increase of electromyography amplitude (quadriceps muscle) was noted only in T0. The novel ITMS training method is effective for improving muscular strength and power. Improvements in PVT, CMJ, and SJ indicate that the increased strength and power elicited by ITMS training can translate to improvements in sport performance. The ITMS training can also be useful for building muscle mass.
This study aimed to estimate the efficacy of inertial training in older women using the Inertial Training and Measurement System (ITMS), an original device. Fortyfive active women age 53-74 yr performed inertial training with 2 different loads (0 or 5 kg) 3 times weekly for 4 wk. Training sessions consisted of exercises involving the shoulder muscles of the dominant and nondominant arms. The maximal torque and power developed by the dominant and nondominant arms in the 0-kg and 5-kg groups were significantly greater after 4 wk of inertial training (with the exception of torque for the nondominant arm in the 5-kg group; p > .05). Thus, short-term training using the ITMS is efficacious and can be used in older women to improve strength and power. However, ITMS training-induced changes in older women are greater after application of smaller external loads.
The aim of this study was to evaluate the influence of dry-land inertial training (IT) on muscle force, muscle power, and swimming performance. Fourteen young, national-level, competitive swimmers were randomly divided into IT and control (C) groups. The experiment lasted four weeks, during which time both groups underwent their regular swimming training. In addition, the IT group underwent IT using the Inertial Training Measurement System (ITMS) three times per week. The muscle groups involved during the upsweep phase of the arm stroke in front crawl and butterfly stroke were trained. Before and after training, muscle force and power were measured under IT conditions. Simultaneously with the biomechanical measurements on the ITMS, the electrical activity of the triceps brachii was registered. After four weeks of training, a 12.8% increase in the muscle force and 14.2% increase in the muscle power (p < .05) were noted in the IT group. Moreover, electromyography amplitude of triceps brachii recorded during strength measurements increased by 22.7% in the IT group. Moreover, swimming velocity in the 100 m butterfly and 50 m freestyle improved significantly following the four weeks of dry-land IT (-1.86% and -0.76%, respectively). Changes in the C group were trivial. Moreover, values of force and power registered during the ITMS test correlated negatively with the 100 m butterfly and 50 m freestyle swimming times (r value ranged from -.80 to -.91). These results suggest that IT can be useful in swimming practice.
The aim of the study was to evaluate the impact of inertial training on upper and lower extremity strength in the elderly. The study also assessed the influence of inertial training on their independence, balance, and speed and quality of gait. Methods: Twenty physically inactive older residents of a nursing home (6 women and 14 men; age, 76.7 ± 8.77 years) were randomized to a training (T; n = 10) or control group (C; n = 10). The T group performed inertial training twice a week for 6 weeks using a Cyklotren inertial device. Each training session included 12 exercise sets involving the elbow and knee flexor and extensor muscles (3 sets per single muscle group). The training loads were 10 and 20 kg for the upper and lower extremities, respectively. Before and after training, the maximum force of trained muscles was evaluated under training conditions. Functional tests were also completed. Results: Participants from the T group had significantly increased (37.1-69.1%) elbow and knee flexor and extensor muscle strength. Improvement in upper and lower limb strength in non-specific conditions was also noted; 23.3% and 40.6%, respectively. Functional abilities improved significantly in the T group (Tinetti balance test: 29%, Tinetti gait tests: 18.6%, and gait speed (8-Foot Up-and-Go): 12.8%), while remaining unchanged in C. Conclusion: We strongly recommend a daily routine of inertial training for older adults. Benefits from inertial training can reduce the risk of falls and increase the safety and independence of the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.