The resistance during the frictional interaction of polymeric materials with metallic materials is characterized by a significant dependence on the dynamics of the motion inputs. In a metal-polymer friction pair, the static friction resistance during standstill under load depends on the rate of growth of the force causing the relative motion. Tribological tests of selected (polymer-metal) sliding pairs were carried out. The selected polymers were polyurethane (TPU), polysulfone (PSU), and silicone rubber (SI). They interacted with a pin made of normalized C45 steel under unitary pressure p = 0.5 MPa in dry friction conditions at different gradients of the force driving the relative motion (dF/dt = 0.1-20 [N/s]). The static friction coefficient of the selected sliding pairs was determined on the basis of the recorded static friction force values. The test results show a significant influence of the rate of increase in the motion driving force on the values of static friction resistance. This is mainly due to the viscoelastic properties of polymers.
Sliding cooperation of materials with different hardness (deformability), e.g., a polymeric material cooperating with metallic materials, occurs in machine elements in one of the following two variants: a conventional pair or a reverse pair. In the case of the conventional sliding pair, the deformation area (contact area) of the sliding materials does not move on the surface of the polymer element during their cooperation. In the case of reverse pairs, the contact surface changes its position when moving on the surface of the polymer element. Depending on the variant of the sliding pair, the differences in the friction and wear process of polymer material can be observed. Tribological investigations of chosen sliding pairs (elastomer on steel or steel on elastomer) in the static friction were carried out on the rig. The polymeric materials selected for the tests were thermoplastic elastomers TPU, PUR, and silicone rubber SI. These materials co-operated with C45 steel in the different contact pressures (p = 0.1 – 0.26 MPa) under dry friction or mixed lubrication conditions (hydraulic oil Hipol HLP-68). Based on the recorded value of the friction force Ft, the values of static coefficients of friction μstat were determined. The test results showed a significant influence of the variant of the combination of materials (metal-polymer or polymer-metal) on the value of the friction coefficient. In all tested pairs in which steel sample (pin) slid against elastomeric plates, the friction coefficient was higher than in the case when the elastomeric sample (pins) cooperated with steel counterfaces (plates). The main reason is the considerable value of the deformation component of the friction force. This is probably due to the displacement of the elastomer deformation area in its surface layer and energy dissipation as a result of stress-strain hysteresis in the elastomeric material, as in the case with reversed pairs.
The frictional cooperation of materials with different hardnesses occurs in machine elements in one of the following two variants: simple or reversed friction pairs. For a simple sliding pair, the sliding materials' deformation area (contact area) does not move over the surface of the polymeric element during their interaction. In the case of reversed pairs, the contact surface changes its position as it moves over the surface of the polymer element. Tribological tests of selected sliding pairs (polymer on steel or steel on polymer) in static friction were carried out on a tribotester for tests in a reciprocating motion. The polymers selected for the research were popular sliding materials in engineering applications: ultra-high molecular weight polyethylene (PEUHMW), polyoxymethylene (POM) and polytetrafluoroethylene (PTFE). These materials cooperated with the C45 steel at different unit pressure (P = 0.5; 1; 2 [MPa]) in dry friction conditions. The measurement results showed a significant influence of the material combination variant (metal–polymer, polymer–metal) on the value of the friction coefficient. In all tested material combinations in which the steel sample (pin) slid over the polymer plate, the friction coefficient was higher than when the polymer sample worked with the steel plate.
The paper presents numerical calculations of polymer sliding bearings during their operation at low temperatures. Calculations of the frictional moment and the contact area were performed for bearing pans made of PA and PEEK. In the numerical model, the influence of temperature on the mechanical properties (modulus of longitudinal elasticity) and tribological properties (coefficient of friction) were taken into account. The diversified influence of the temperature and thickness of the polymer bearing pans was demonstrated with regards to elements made of different polymer materials. At low temperatures (up to T = -50°C), a different (depending on the used polymer) influence of mechanical and tribological properties on the resistance to motion was found. The ABAQUS calculation package and the finite element method (FEM) were used in the calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.