Various classical and non-classical nonlinear effects have been observed in ultrasonic wave propagation and used for contact-type damage detection. The former relates to higher harmonic generation, whereas the latter is based nonlinear vibro-acoustic modulations effects. More recently both nonlinear effects have been observed in shear horizontal wave propagation. However, the nonlinear crack-wave interaction is still not fully understood. It is assumed that this interaction is enhanced by local nonlinear elasticity and dissipation of elastic waves. The latter effect is the major focus of the paper. Previous experimental research studies demonstrate that high-frequency ultrasonic waves propagation through crack faces that are in contact–and perturbed by low-frequency excitation–exhibit local nonlinear effects of elastic and dissipative nature. The amplitude level of these effects depends on applied stresses. Both nonlinear effects have a great potential for structural damage detection. However, more theoretical and modelling research work is needed to fully understand these non-classical nonlinear effects. Numerical simulations based on nonlinear crack-wave interaction are investigated in the paper. Three models of local nonlinearity are investigated. These are: the Coulomb friction, the nonlinear viscous damping and the hysteretic stress-strain models. Nonlinear wavefield distortions–due to crack-wave interactions–are observed and analyzed. Numerical simulations are performed using the Local Interaction Simulation Approach (LISA), implemented for shear horizontal wave propagation. Wave amplitudes corresponding to generated higher harmonics and modulated sidebands are investigated in the presented work.
In the last few years, researchers have paid more and more attention to Shear Horizontal (SH) waves propagation characteristics as new approach used for damage detection. In particular, the fundamental SH0 mode is interesting due to its non-dispersive characteristics and single-mode existence in a certain range of frequency. These features offer promising applicability for developing a new Structural Health Monitoring technique. In order to examine damage detection features of the SH0, it is necessary to first investigate it via numerical simulations. Thus, in this paper, a new modelling approach is developed, based on the Local Interaction Simulation Approach (LISA), which allows to selectively simulate the propagation of SH waves. Both linear and nonlinear material definitions are taken into consideration to investigate propagation features of the aforementioned waves. In the latter case, the Landau-Lifshitz model and the Green-Lagrange strain-displacement relation is used. Furthermore, a local type of nonlinearity, such as a crack, is introduced to the model as well. The high-order harmonics generation is investigated for various cases, depending on the particular presence of the nonlinearity source. Based on the simulation results, the influence of propagation distance on the magnitude of high-order harmonics is evaluated and a comparative analysis is carried out in order to distinguish the sources of the nonlinearity. Presented results demonstrate that LISA is a sufficient tool for the SH-wavefield analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.