Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation is important. In this paper, an approach to image quality assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by several IQA approaches. At first, in order to obtain such joint models, an optimisation problem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e., objective scores, is used as the aggregation operator. Then, the weight of each measure is considered as a decision variable in a problem of minimisation of root mean square error between obtained objective scores and subjective scores. Subjective scores reflect ground-truth and involve evaluation of images by human observers. The optimisation problem is solved using a genetic algorithm, which also selects suitable measures used in aggregation. Obtained multimeasures are evaluated on four largest widely used image benchmarks and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other competing measures.
We focus on gesture recognition based on 3D information in the form of a point cloud of the observed scene. A descriptor of the scene is built on the basis of a Viewpoint Feature Histogram (VFH). To increase the distinctiveness of the descriptor the scene is divided into smaller 3D cells and VFH is calculated for each of them. A verification of the method on publicly available Polish and American sign language datasets containing dynamic gestures as well as hand postures acquired by a time-of-flight (ToF) camera or Kinect is presented. Results of cross-validation test are given. Hand postures are recognized using a nearest neighbour classifier with city-block distance. For dynamic gestures two types of classifiers are applied: (i) the nearest neighbour technique with dynamic time warping and (ii) hidden Markov models. The results confirm the usefulness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.