A large part of Web traffic on e-commerce sites is generated not by human users but by Internet robots: search engine crawlers, shopping bots, hacking bots, etc. In practice, not all robots, especially the malicious ones, disclose their identities to a Web server and thus there is a need to develop methods for their detection and identification. This paper proposes the application of a Bayesian approach to robot detection based on characteristics of user sessions. The method is applied to the Web traffic from a real e-commerce site. Results show that the classification model based on the cluster analysis with the Ward's method and the weighted Euclidean metric is very effective in robot detection, even obtaining accuracy of above 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.