The article presents application of artificial immune algorithms in classification of vectorized medical data sets. Artificial immune network was created and trained for the purpose of arterial blood gasometry parameters (pH, pCO2, pO2, HCO3) classification. Training data originates from the Infant Intensive Care Unit of the Polish
Abstract.Over the past few decades there has been a growing interest in the use of biology as a source of inspiration for solving computational problems. The motivation of this field is primarily to extract useful metaphors from natural biological systems, in order to create effective computational solutions to complex problems in a wide range of domain areas. The more notable developments have been the neural networks inspired by the working of the brain, and the evolutionary algorithms inspired by neo-Darwinian theory of evolution. This paper presents the theory of an immune network model, and it tries to apply to solve signal classification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.