The chromosomal characteristics, locations and variations of the C-band positive heterochromatin and telomeric DNA sequences were studied in the European grayling karyotype (Thymallus thymallus, Salmonidae) using conventional C-banding, endonucleases digestion banding, silver nitrate (AgNO3), chromomycin A3 and 4′,6-diamidino-2-phenylindole staining techniques as well as fluorescence in situ hybridization (FISH) and primed in situ labelling. Original data on the chromosomal distribution of segments resistant to AluI restriction endonuclease and identification of the C-banded heterochromatin presented here have been used to characterize the grayling karyotype polymorphism. Structural and length polymorphism of the chromosome 21 showing a conspicuous heterochromatin block adjacent to the centromere seems to be the result of the deletion and inversion. Two pairs of nuclear organizer regions (NOR)-bearing chromosomes were found to be polymorphic in size and displaying several distinct forms. FISH with telomeric peptide nucleic acid probe enabled recognition of the conservative telomeric DNA sequences. The karyotype of the thymallid fish is thought to experienced numerous pericentric inversions and internal telomeric sites (ITSs) observed at the pericentromeric regions of the six European grayling metacentric chromosomes are likely relics of the these rearrangements. None of the ITS sites matched either chromosome 21 or NOR bearing chromosomes.
Pseudomonas fluorescens and Aeromonas hydrophila bacteria are opportunistic pathogens that occur naturally in the aquatic environment and in the gut flora of healthy fish. Both species can pose a serious threat for fish that are highly sensitive to water pollution. The aim of this study was to determine the extent to which the amount of administered fish feed and fish biomass affect the distribution and abundance of Ps. fluorescens and A. hydrophila bacteria in a recirculating aquaculture system (RAS) during farming of European grayling (Thymallus thymallus L.) broodstock. A total of 68 water samples from the inflow, two rearing tanks and the outflow as well as 17 feed samples were collected and analyzed separately. Bacterial populations were analyzed by the culture-dependent method and a molecular method (fluorescence in situ hybridization, FISH) to detect culturable strains and viable but non-culturable strains, respectively. Fish biomass, feed and 16 water quality parameters (temperature, pH, concentration of dissolved oxygen, oxygen saturation, five-day biochemical oxygen demand (BOD5), total phosphorus, total organic phosphorus and nitrogen, orthophosphates, total nitrogen, nitrite and nitrate nitrogen, ammonia nitrogen, ammonium nitrogen, total suspended solids, and total organic carbon) were the explanatory factors. Statistically significant differences (RM-ANOVA, p ≤ 0.05) were stated in bacterial abundance in samples from the inflow, rearing tanks and the outflow. Water samples from the RAS were abundantly colonized by non-culturable Ps. fluorescens and A. hydrophila bacteria. Feed was not a source of bacteria, but a redundancy analysis (RDA) revealed that the amount of feed, fish biomass, BOD5, and total suspended solids and total organic carbon were positively correlated in both Ps. fluorescens and A. hydrophila. These parameters also influenced the distribution of both potentially pathogenic bacterial populations and contributed to the bacterial contamination of water in the RAS. Our results are particularly valuable for aquacultures that help to replenish wild stocks and rebuild populations of threatened species in natural aquatic environments.
This study determined the contents of cadmium (Cd) in the muscles, ovaries, and eggs of silver female European eels. The analysis of cadmium content was performed on female European eels caught during commercial fishing in freshwater in Warmia and Mazury (Poland), and then subjected to artificial maturation and ovulation processing under controlled conditions. The content of cadmium (Cd) in the tissues was determined by flameless atomic spectrometry using an electrothermal atomizer. The analysis showed statistically significant differences between the cadmium content in the muscles, ovaries, and eggs (p < 0.05) of female European eels. The lowest cadmium content was found in the muscle tissue (0.0012 ± 0.0001 mg kg−1 wet weight) and the highest in eggs (after ovulation) (0.0038 ± 0.0007 mg kg−1 wet weight). Moreover, a relationship was found between the cadmium content in the muscle tissue and the ovaries (R = 0.673; p = 0.0117) in the same fish. The movement of cadmium from tissues to oocytes may indicate a significant problem concerning this heavy metal content in the reproduction of European eel.
Human activities influence the presence of potentially pathogenic bacteria in indoor air. The aim of this study was to determine the effect of the experimental rearing of European grayling and European perch in a recirculating aquaculture system on the contamination of indoor air with potentially pathogenic Aeromonas hydrophila (PPAH) and the resulting health risks to humans. The PPAH counts, their resistance to seven antibiotics, and the multiple antibiotic resistance (MAR) index were determined in samples of indoor air and water from rearing tanks. The PPAH counts were highest in the laboratory bioaerosol where two fish species were reared. The calculated indoor/outdoor ratio (I/O > 1) demonstrated that tank water was the internal source of PPAH emissions. The unconstrained PCA revealed strong positive relationships (p ≤ 0.05) between the PPAH counts in the indoor air and water samples. Most of the PPAH strains isolated from laboratory air were resistant to tetracycline, cefotaxime, and erythromycin, and 26–82% of the isolates exhibited multiple drug resistance. The values of the MAR index were similar in samples of laboratory air and water (0.23–0.34 and 0.24–0.36, respectively). Agglomerative clustering revealed two clusters of strains isolated from laboratory air and tank water. The results of this study indicate that aquaculture can be a source of indoor air contamination with PPAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.