We consider two new classes of twisted D=4 quantum Poincaré symmetries described as the dual pairs of noncocommutative Hopf algebras. Firstly we investigate a two-parameter class of twisted Poincaré algebras which provide the examples of Lie-algebraic noncommutativity of the translations. The corresponding associative star-products and new deformed Lie-algebraic Minkowski spaces are introduced. We discuss further the twist deformations of Poincaré symmetries generated by the twist with its carrier in Lorentz algebra. We describe corresponding deformed Poincaré group which provides the quadratic deformations of translation sector and define the quadratically deformed Minkowski space-time algebra.
The first-order correction of the perturbative solution of the coupled
equations of the quadratic gravity and nonlinear electrodynamics is
constructed, with the zeroth-order solution coinciding with the ones given by
Ay\'on-Beato and Garc{\'\i}a and by Bronnikov. It is shown that a simple
generalization of the Bronnikov's electromagnetic Lagrangian leads to the
solution expressible in terms of the polylogarithm functions. The solution is
parametrized by two integration constants and depends on two free parameters.
By the boundary conditions the integration constants are related to the charge
and total mass of the system as seen by a distant observer, whereas the free
parameters are adjusted to make the resultant line element regular at the
center. It is argued that various curvature invariants are also regular there
that strongly suggests the regularity of the spacetime. Despite the complexity
of the problem the obtained solution can be studied analytically. The location
of the event horizon of the black hole, its asymptotics and temperature are
calculated. Special emphasis is put on the extremal configuration
We consider κ-deformed relativistic symmetries described algebraically by modified Majid-Ruegg bicrossproduct basis and investigate the quantization of field oscillators for the κ-deformed free scalar fields on κ-Minkowski space. By modification of standard multiplication rule, we postulate the κ-deformed algebra of bosonic creation and annihilation operators. Our algebra permits to define the n-particle states with classical addition law for the fourmomenta in a way which is not in contradiction with the nonsymmetric quantum fourmomentum coproduct. We introduce κ-deformed Fock space generated by our κ-deformed oscillators which satisfy the standard algebraic relations with modified κ-multiplication rule. We show that such a κ-deformed bosonic Fock space is endowed with the conventional bosonic symmetry properties. Finally we discuss the role of κ-deformed algebra of oscillators in field-theoretic noncommutative framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.