One of the challenges in the fight against poverty is the precise localization and assessment of vulnerable communities’ sprawl. The characterization of vulnerability is traditionally accomplished using nationwide census exercises, a burdensome process that requires field visits by trained personnel. Unfortunately, most countrywide censuses exercises are conducted only sporadically, making it difficult to track the short-term effect of policies to reduce poverty. This paper introduces a definition of vulnerability following UN-Habitat criteria, assesses different CNN machine learning architectures, and establishes a mapping between satellite images and survey data. Starting with the information corresponding to the 2,178,508 residential blocks recorded in the 2010 Mexican census and multispectral Landsat-7 images, multiple CNN architectures are explored. The best performance is obtained with EfficientNet-B3 achieving an area under the ROC and Precision-Recall curves of 0.9421 and 0.9457, respectively. This article shows that publicly available information, in the form of census data and satellite images, along with standard CNN architectures, may be employed as a stepping stone for the countrywide characterization of vulnerability at the residential block level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.