The genome of the model plant Arabidopsis thaliana encodes 13 oxidosqualene cyclases, 9 of which have been characterized by heterologous expression in yeast. Here we describe another cyclase, baruol synthase (BARS1), which makes baruol (90%) and 22 minor products (0.02-3% each). This represents as many triterpenes as have been reported for all other Arabidopsis cyclases combined. By accessing an extraordinary repertoire of mechanistic pathways, BARS1 makes numerous skeletal types and deprotonates the carbocation intermediates at 14 different sites around rings A, B, C, D, and E. This undercurrent of structural and mechanistic diversity in a superficially accurate enzyme is incompatible with prevailing concepts of triterpene biosynthesis, which posit tight control over the mechanistic pathway through cation-pi interactions, with a single proton acceptor in a hydrophobic active site. Our findings suggest that mechanistic diversity is the default for triterpene biosynthesis and that product accuracy results from exclusion of alternative pathways.
The ability to profile the prevalence and functional activity of endogenous antibodies is of vast clinical and diagnostic importance. Serum antibodies are an important class of biomarkers and are also crucial elements of immune responses elicited by natural disease causing-agents as well as vaccines. In particular, materials for manipulating and/or enhancing immune responses toward disease-causing cells or viruses have exhibited significant promise for therapeutic applications. Antibody-recruiting molecules (ARMs) – bifunctional organic molecules that re-direct endogenous antibodies to pathological targets, thereby increasing their recognition and clearance by the immune system – have proven particularly interesting. Notably, although ARMs capable of hijacking antibodies against oligosaccharides and electron-poor aromatics have proven efficacious, systematic comparisons of the prevalence and effectiveness of natural anti-hapten antibody populations have not appeared in the literature.
Herein we report head-to-head comparisons of three chemically-simple antigens, which are known ligands for endogenous antibodies. Thus, we have chemically synthesized bifunctional molecules containing 2,4-dinitrophenyl (DNP), phosphorylcholine (PC) and rhamnose. We then used a combination of ELISA, flow cytometry, and cell-viability assays to compare these antigens in terms of their abilities both to recruit natural antibody from human serum and also to direct serum-dependent cytotoxicity against target cells. These studies have revealed rhamnose to be the most efficacious of the synthetic antigens examined. Furthermore, analysis of 122 individual serum samples has afforded comprehensive insights into population-wide prevalence and isotype distributions of distinct anti-hapten antibody populations. In addition to providing a general platform for comparing and studying anti-hapten antibodies, these studies serve as a useful starting point for the optimization of antibody-recruiting molecules and other synthetic strategies for modulating human immunity.
The triterpene product profile is reported for At5g36150 (PEN3), the last unexamined oxidosqualene cyclase in the reference plant Arabidopsis thaliana. PEN3 makes tirucalla-7,24-dien-3beta-ol ( approximately 85%) and several minor products. Also discussed are the unexpectedly facile convergent evolution of another Arabidopsis tirucalladienol synthase (LUP5), mechanistic origins of the 20S configuration, and active-site remodeling necessary to accommodate the 17alpha side chain. This work marks the first completed functional characterization of all triterpene synthases in a higher plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.