The antimicrobial activity of new meso-tetrakis(N-methyl-6-quinolinyl)-substituted porphyrins and meso-tetrakis(N-methyl-6-quinolinyl)-substituted chlorins is described. The dark toxicity and photosensitising potentials of free-base (TQP and TQC) and its Sn(IV)-complexes [(TQP)Sn(IV) and (TQC)Sn(IV)] were tested on Gram-positive (Staphylococus aureus), Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and two species of yeasts (Candida albicans and Rhodotorula bogoriensis). The results described in this paper show that TQP and (TQP)Sn(IV) did not inhibit the growth of S. aureus in the dark, but efficiently photosensitize the inactivation of this Gram-positive bacteria. These porphyrins have no appreciable photosensitizing activity towards Gram-negative bacteria. However, (TQP)Sn(IV) shows high dark toxicity against E. coli and P. aeruginosa. The free-base derivatives demonstrated dark activity only in the case of P. aeruginosa. We suppose that these meso-tetrakis(N-methyl-6-quinolinyl)-substituted porphyrins can bind to the Gram-negative bacteria outer membrane receptors that transported vitamin B12. The meso-substituted chlorins TQC and (TQC)Sn(IV) have shown similar efficiency in the dark- and photoinactivation of S. aureus. They revealed a middle level of dark toxicity towards Gram-negative bacteria. The Sn(IV)-complex of chlorin in comparison with free base and metalloporphyrins are more effective in photoinactivation of Gram-negative bacteria. Yeasts, such as Candida albicans and Rhodotorula bogoriensis are more sensitive to photodynamic inactivation as bacterial cells. The effects of (TQP)Sn(IV) and (TQC)Sn(IV) are more expressed than effects of free bases.
New complexes of 3d-metals (Co2+, Ni2+, Zn2+) with bis(phosphonomethyl)aminosuccinic acid (H6BPMAS) have been synthesized. The complexes were studied in aqueous solutions at ratios M2+:H6BPMAS = 1:1 in a wide pH range (1÷10). Regardless of the nature of the metal, the formation of complexes of the general composition [M(HnBPMAS)(OH)m] (n= 4÷0, m=1÷0) is shown. The stability constants of the formed differently protonated complexes are calculated and diagrams of their distribution are plotted. It is shown that the process of complexation takes place most completely in the region of pH>4. For all bis(phosphonomethyl)aminosuccinates of 3d metals, the dominance of the complex with one form of the ligand occurs in approximately the same pH ranges. A close order of change in the values of lgKst. complexes testifies to the same type of structure of their internal coordination sphere. Solid complexes of the composition Na4[MBPMAS]⋅4H2O were synthesized. Their composition, structure, and thermal characteristics were determined by the set of methods such as diffuse reflectance spectroscopy, IR spectroscopy, DTA and non-quantitative mass spectrometry. It is proved that the complexes have the structure of a distorted octahedron, in which the 3-d metal ions are bound to the oxygen atoms of the carboxyl and phosphonic groups and the tertiary nitrogen atom of the ligand. At the same time, two 5-membered (aminomethylenephosphonic and glycine) and one 6-membered (β-alanine) metallocycles are formed in bis(phosphonomethyl)aminosuccinates. The biological activity of H6BPMAS and its complexes with Ni(II) and Co(II) against non-pathogenic bacterial species of microorganisms Pseudomonas fluorescens and Pseudomonas aureofaciens was studied. The study of the activity of substances was carried out in a liquid sterile Hiss medium. The maximum stimulating effect on the growth of bacterial cultures for the studied compounds was recorded at a concentration of 1 µM in 24 hours after the start of cultivation of microorganisms. The highest growth of microorganisms was recorded for metal complexes (50% Na4[CoBPMAS]·4H2O and 35% Na4[NiBPMAS]·4H2O). The maximum stimulating effect on the growth of bacterial cultures is shown by the Co(II) complex, which is able to initiate the synthesis of one of the most important growth hormones - heteroauxin.
SiO2-Al2O3 xerogels with various Si : Al ratios were synthesized via sol-gel method (two kinds of synthetic procedures were used) and characterized by means of elemental analysis, XRD, thermogravimetry and IR spectroscopy. No losses of precursors were found during the synthesis and the introduced components are quantitatively transferred from the initial mixture to the composition of the formed samples.The position of the luminescence band in the 300–500 nm region depends on the wavelength of the exciting light, time of gel maturation and the drying temperature, which is the manifestation of the influence of the structure of units in xerogels on the luminescent properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.