Accumulation of amyloid-beta (Aβ) in the brain is thought to derive from the impairment of Aβ clearance mechanisms rather than from its overproduction, which consequently contributes to the development of Alzheimer’s disease. The choroid plexus epithelial cells constitute an important clearance route for Aβ, either by facilitating its transport from the cerebrospinal fluid to the blood, or by synthesizing and secreting various proteins involved in Aβ degradation. Impaired choroid plexus synthesis, secretion, and transport of these Aβ-metabolizing enzymes have been therefore associated with the disruption of Aβ homeostasis and amyloid load. Factors such as aging, female gender, and circadian rhythm disturbances are related to the decline of choroid plexus functions that may be involved in the modulation of Aβ-clearance mechanisms. In this study, we investigated the impact of age, sex hormones, and circadian rhythm on the expression of Aβ scavengers such as apolipoprotein J, gelsolin, and transthyretin at the rat choroid plexus. Our results demonstrated that mRNA expression and both intracellular and secreted protein levels of the studied Aβ scavengers are age-, sex-, and circadian-dependent. These data suggest that the Aβ-degradation and clearance pathways at the choroid plexus, mediated by the presence of Aβ scavengers, might be compromised as a consequence of aging and circadian disturbances. These are important findings that enhance the understanding of Aβ-clearance-regulating mechanisms at the blood–cerebrospinal fluid barrier.
In humans, genetic variants of DLGAP1-4 have been linked with neuropsychiatric conditions, including autism spectrum disorder (ASD). While these findings implicate the encoded postsynaptic proteins, SAPAP1-4, in the etiology of neuropsychiatric conditions, underlying neurobiological mechanisms are unknown. To assess the contribution of SAPAP4 to these disorders, we characterized SAPAP4-deficient mice. Our study reveals that the loss of SAPAP4 triggers profound behavioural abnormalities, including cognitive deficits combined with impaired vocal communication and social interaction, phenotypes reminiscent of ASD in humans. These behavioural alterations of SAPAP4-deficient mice are associated with dramatic changes in synapse morphology, function and plasticity, indicating that SAPAP4 is critical for the development of functional neuronal networks and that mutations in the corresponding human gene, DLGAP4, may cause deficits in social and cognitive functioning relevant to ASD-like neurodevelopmental disorders.
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid b (Ab) production and clearance, leading to its accumulation in the brain of older subjects. Ab accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Ab production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Ab production, metabolism, degradation and clearance by SH.
Alzheimer's disease is regarded as a synaptopathy with a long presymptomatic phase. Soluble, oligomeric amyloid-β (Aβ) is thought to play a causative role in this disease, which eventually leads to cognitive decline. However, most animal studies have employed mice expressing high levels of the Aβ precursor protein (APP) transgene to drive pathology. Here, to understand how the principal neurons in different brain regions cope with moderate, chronically present levels of Aβ, we employed transgenic mice expressing equal levels of mouse and human APP carrying a combination of three familial AD (FAD)-linked mutations (Swedish, Dutch, and London), that develop plaques only in old age. We analyzed dendritic spine parameters in hippocampal and cortical brain regions after targeted expression of EGFP to allow high-resolution imaging, followed by algorithm-based evaluation of mice of both sexes from adolescence to old age. We report that Aβ species gradually accumulated throughout the life of APP SDL mice, but not the oligomeric forms, and that the amount of membrane-associated oligomers decreased at the onset of plaque formation. We observed an age-dependent loss of thin spines under most conditions as an indicator of a loss of synaptic plasticity in older mice. We further found that hippocampal pyramidal neurons respond to increased Aβ levels by lowering spine density and shifting spine morphology, which reached significance in the CA1 subfield. In contrast, the spine density in cortical pyramidal neurons of APP SDL mice was unchanged. We also observed an increase in the protein levels of PSD-95 and Arc in the hippocampus and cortex, respectively. Our data demonstrated that increased concentrations of Aβ have diverse effects on dendritic spines in the brain and suggest that hippocampal and cortical neurons have different adaptive and compensatory capacity during their lifetime. Our data also indicated that spine morphology differs between sexes in a region-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.