asthmatic patients in comparison to controls. The differences in miRNA expression were mainly similar in asthmatics with and without AR. With regard to asthma severity, a trend of increased miRNA expression in persistent asthma was seen, whereas the downregulation of certain miRNAs was most distinct in nonpersistent-asthma patients. Conclusions: Differences in miRNA expression in the nasal mucosa of subjects with long-term asthma and AR can be seen also when no markers of Th2-type inflammation are detected. Asthma severity had only a minor impact on miRNA expression.
The P-selectin counterreceptor PSGL-1 is covalently modified by mono ␣2,3-sialylated, multiply ␣1,3-fucosylated polylactosamines. These glycans are required for the adhesive interactions that allow this adhesion receptor-counterreceptor pair to facilitate leukocyte extravasation. To begin to understand the biosynthesis of these glycans, we have characterized the acceptor and site specificities of the two granulocyte ␣1,3-fucosyltransferases, Fuc-TIV and Fuc-TVII, using recombinant forms of these two enzymes and a panel of synthetic polylactosamine-based acceptors. We find that Fuc-TIV can transfer fucose effectively to all N-acetyllactosamine (LN) units in neutral polylactosamines, and to the "inner" LN units of ␣2,3-sialylated acceptors but is ineffective in transfer to the distal ␣2,3-sialylated LN unit in ␣2,3-sialylated acceptors. Fuc-TVII, by contrast, effectively fucosylates only the distal ␣2,3-sialylated LN unit in ␣2,3-sialylated acceptors and thus exhibits an acceptor site-specificity that is complementary to Fuc-TIV. Furthermore, the consecutive action of Fuc-TIV and Fuc-TVII, in vitro, can convert the long chain sialoglycan SA␣2-3LN1-3LN1-3LN (where SA is sialic acid) into the trifucosylated molecule SA␣2-3Lex1-3Lex1-3Lex (where Lex is the trisaccharide Gal1-4(Fuc␣1-3)GlcNAc) known to decorate PSGL-1. The complementary in vitro acceptor site-specificities of Fuc-TIV and Fuc-TVII imply that these enzymes cooperate in vivo in the biosynthesis of monosialylated, multifucosylated polylactosamine components of selectin counterreceptors on human leukocytes.
Our results suggest that microRNAs miR-155, miR-205, miR-498, and let-7e may be important in the allergic inflammation present in nasal mucosa. Regarding NAR, our findings support the view that mechanisms other than inflammation are pivotal.
SummaryAcute organ transplant rejection is characterized by a heavy lymphocyte infiltration. We have previously shown that alterations in the graft endothelium lead to increased lymphocyte traffic into the graft. Here, we demonstrate that lymphocytes adhere to the endothelium of rejecting cardiac transplants, but not to the endothelium of syngeneic grafts or normal hearts analyzed with the in vitro Stamper-Woodruff binding assay. Concomitant with the enhanced lymphocyte adhesion, the cardiac endothelium begins to de novo express sialyl Lewis a and sialyl Lewis x (sLea and sLex) epitopes, which have been shown to be sequences of L-selectin counterreceptors. The endothelium of allografts, but not that of syngeneic grafts or normal controls, also reacted with the L-selectin-immunoglobulin G fusion protein, giving further proof of inducible L-selectin counterreceptors. The lymphocyte adhesion to endothelium could be significantly decreased either by treating the iymphocytes with anti-L-selectin antibody HRL-1, or by treating the tissue sections with sialidase or anti-sLea or anti-sLex monoclonal antibodies. Finally, we synthetized enzymatically several members of the sLex family oligosaccharides and analyzed their ability to block lymphocyte adhesion to cardiac endothelium. The monovalent sLex (a tetramer), divalent sLex (a decamer), and tetravalent sLex (a 22-mer) could all significantly reduce lymphocyte binding, but the inhibition by the tetravalent sLex-construct was clearly superior to other members of the sLex family. The crucial control oligosaccharides, sialyl lactosamines lacking fucose but being otherwise similar to the members of sLex family, had no effect on lymphocyte binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.