. New types of antimicrobial compounds were identified in the culture filtrate of Lactobacillus plantarum VTT E-78076. Activity was detected in the low molecular mass fraction separated by gel chromatography. This fraction totally inhibited the growth of the Gram-negative test organism, Pantoea agglomerans (Enterobacter agglomerans) VTT E-90396. Characteristic compounds from this fraction were identified by GC/MS-analysis and the identification was confirmed using pure commercial reference compounds in identical chromatographs and in antimicrobial tests. The active fraction included benzoic acid (CAS 65-85-0), 5-methyl-2,4-imidazolidinedione (CAS 616-03-5, methylhydantoin), tetrahydro-4-hydroxy-4-methyl-2H-pyran-2-one (CAS 674-26-0, mevalonolactone) and 3-(2-methylpropyl)-2,5-piperazinedione (CAS 5845-67-0, cyclo(glycyl-L-leucyl)). These compounds in concentrations of 10 ppm inhibited growth of the test organism by 10-15% when acting separately, but 100% when all were applied together with 1% lactic acid. The inhibition was 40% by 1% lactic acid alone. The compounds were also active against Fusarium avenaceum (Gibberella avenacea) VTT D-80147. The inhibition was 10-15% by separate compounds in concentrations of 10 ppm and maximally 20% in combinations. Fungal growth was not inhibited by lactic acid. Inhibition by unfractionated Lact. plantarum culture filtrate was 37% and by the low molecular mass fraction, 27%.
One oxidase (EC 1.10.3.2) and three lignin peroxidases (EC 1.11.1.-) were purified from the culture liquid of the white-rot fungus Phlebia radiata Fr. All the enzymes were glycoproteins. The oxidase had Mr 64,000 and the lignin peroxidases I, II and III had Mr values 42,000, 45,000 and 44,000 respectively. The lignin peroxidases were found to share common antigenic determinants: lignin peroxidases II and III were serologically indistinguishable and lignin peroxidase I was related but distinguishable. The oxidase did not share any immunological properties with the lignin peroxidases. Lignin peroxidases of Phlebia contain protoporphyrin IX as a prosthetic group. In the presence of H2O2 and an electron donor, veratryl alcohol, lignin peroxidases exhibit spectral shifts analogous to those of animal catalase (EC 1.11.1.6). Phlebia enzymes show optimal activity at pH 3-4.5 at 40 degrees C and are stable in the pH range 5-6. They modify Kraft lignin and phenolic compounds containing hydroxy and methoxy groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.