The aim of X-ray tomography is to reconstruct an unknown physical body from a collection of projection images. When the projection images are only available from a limited angle of view, the reconstruction problem is a severely ill-posed inverse problem. Statistical inversion allows stable solution of the limited-angle tomography problem by complementing the measurement data by a priori information. In this work, the unknown attenuation distribution inside the body is represented as a wavelet expansion, and a Besov space prior distribution together with positivity constraint is used. The wavelet expansion is thresholded before reconstruction to reduce the dimension of the computational problem. Feasibility of the method is demonstrated by numerical examples using in vitro data from mammography and dental radiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.