In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)-dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection.
Gel-based analysis of thylakoid membrane protein complexes represents a valuable tool to monitor the dynamics of the photosynthetic machinery. Native-PAGE preserves the components and often also the conformation of the protein complexes, thus enabling the analysis of their subunit composition. Nevertheless, the literature and practical experimentation in the field sometimes raise confusion owing to a great variety of native-PAGE and thylakoid-solubilization systems. In the present paper, we describe optimized methods for separation of higher plant thylakoid membrane protein complexes by native-PAGE addressing particularly: (i) the use of detergent; (ii) the use of solubilization buffer; and (iii) the gel electrophoresis method. Special attention is paid to separation of high-molecular-mass thylakoid membrane super- and mega-complexes from Arabidopsis thaliana leaves. Several novel super- and mega-complexes including PS (photosystem) I, PSII and LHCs (light-harvesting complexes) in various combinations are reported.
Oxygenic photosynthesis produces various radicals and active oxygen species with harmful effects on photosystem II (PSII). Such photodamage occurs at all light intensities. Damaged PSII centres, however, do not usually accumulate in the thylakoid membrane due to a rapid and efficient repair mechanism. The excellent design of PSII gives protection to most of the protein components and the damage is most often targeted only to the reaction centre D1 protein. Repair of PSII via turnover of the damaged protein subunits is a complex process involving (i) highly regulated reversible phosphorylation of several PSII core subunits, (ii) monomerization and migration of the PSII core from the grana to the stroma lamellae, (iii) partial disassembly of the PSII core monomer, (iv) highly specific proteolysis of the damaged proteins, and finally (v) a multi-step replacement of the damaged proteins with de novo synthesized copies followed by (vi) the reassembly, dimerization, and photoactivation of the PSII complexes. These processes will shortly be reviewed paying particular attention to the damage, turnover, and assembly of the PSII complex in grana and stroma thylakoids during the photoinhibition-repair cycle of PSII. Moreover, a two-dimensional Blue-native gel map of thylakoid membrane protein complexes, and their modification in the grana and stroma lamellae during a high-light treatment, is presented.
Photosystem (PS) II is a multisubunit thylakoid membrane pigment-protein complex responsible for light-driven oxidation of water and reduction of plastoquinone. Currently more than 40 proteins are known to associate with PSII, either stably or transiently. The inherent feature of the PSII complex is its vulnerability in light, with the damage mainly targeted to one of its core proteins, the D1 protein. The repair of the damaged D1 protein, i.e. the repair cycle of PSII, initiates in the grana stacks where the damage generally takes place, but subsequently continues in non-appressed thylakoid domains, where many steps are common for both the repair and de novo assembly of PSII. The sequence of the (re)assembly steps of genuine PSII subunits is relatively well-characterized in higher plants. A number of novel findings have shed light into the regulation mechanisms of lateral migration of PSII subcomplexes and the repair as well as the (re)assembly of the complex. Besides the utmost importance of the PSII repair cycle for the maintenance of PSII functionality, recent research has pointed out that the maintenance of PSI is closely dependent on regulation of the PSII repair cycle. This review focuses on the current knowledge of regulation of the repair cycle of PSII in higher plant chloroplasts. Particular emphasis is paid on sequential assembly steps of PSII and the function of the number of PSII auxiliary proteins involved both in the biogenesis and repair of PSII. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
ORCID ID: 0000-0002-7906-6891 (S.J.)Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.