Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time.
Indoor positioning and location estimation inside the buildings is still challenging in Internet of Things (IoT) platform, however GPS signals could successfully solve the outdoor localization problem. A recently introduced RSS-based device, named iBeacon paves the way to estimate the users location inside the buildings. Due to the complexity of indoor RF environments, the positioning accuracy is affected by the placement of the iBeacons. Inadvertently the concept of iBeacon placement for improving the accuracy remains unattended by the current research. This paper provides a comprehensive analysis and experiments on the importance of iBeacon placement, and factors impacting the beacon signal quality. Moreover, we propose a novel beacon placement strategy, Crystal-shape iBeacon Placement (CiP). As another contribution, a customized application for android is developed which is used for recording and analyzing the iBeacon signals. Our proposed placement strategy could achieve 21.7% higher precision than the existing normal iBeacon placement.
Localization, as a crucial service for sensor networks, is an energy-demanding process for both indoor and outdoor scenarios. GPSbased localization schemes are infeasible in remote, indoor areas and it is not a cost-effective solution for large-scale networks. Single mobile-beacon architecture is recently considered to localize sensor networks with the aim of removing numerous GPS-equipped nodes. The critical issue for the mobile beacon-assisted localization is to preserve the consumed power to increase the lifetime. This paper presents a novel power control scheme, namely "Z-power", for mobile beacon traveling along a predefined path. The proposed scheme takes the advantage of deterministic path traveled by the single beacon to efficiently adjust the transmission power. Based on the extensive results, the proposed power control scheme could successfully improve the beacon and sensors energy consumption about 25.37% and 34.09%, respectively. A significant energy-accuracy trade off was achieved using Z-power which could successfully keep the same level of accuracy while providing lower energy consumption. Another group of results collected when obstacle-handling algorithm was applied at the presence of obstacles. In this scenario, Z-power improves energy consumption and localization accuracy with the same level of success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.