Coronavirus 2019 (COVID-19) is a global concern for public health. Thus, early and accurate diagnosis is a critical step in management of this infectious disease. Currently, RT-PCR is routine diagnosis test for COVID-19, but it has some limitations and false negative results. enzyme-linked immunosorbent assay (ELISA) against SARS-CoV-2 antigens seems to be an appropriate approach for serodiagnosis of COVID-19. In the current study, an ELISA system, using a recombinant nucleocapsid (N) protein, was developed for the detection of IgM and IgG antibodies to SARS-CoV-2. The related protein was expressed, purified, and used in an ELISA system. Sera samples (67) for COVID-19 patients, as well as sera samples from healthy volunteers (112), along with sera samples from non-COVID-19 patients were examined by the ELISA system. The expression and purity of the recombinant N protein were approved by SDS-PAGE and Western blotting.
Background
The treatment of many cancers and genetic diseases relies on novel engraftment approaches such as cell therapy and hematopoietic stem cell transplantation (HSCT). However, these methods are hindered by the alloreactive immune responses triggered by incompatible human leukocyte antigen (HLA) molecules. A successful HSCT procedure requires the eradication of donor and recipient HLA alloimmunization. Eliminating HLA-A gene expression using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9) could be a great approach to increase the possibility of a successful HSCT through extending pool of unrelated donors.
Results
Our dual gRNA approach introduced a large deletion in the HLA-A gene. Among 22 single-cloned cells, two clones (9.09%) and 11 clones (50%) received homozygous and heterozygous large deletions, respectively. Finally, the real-time PCR results also revealed that HLA-A gene expression was diminished significantly.
Conclusion
The results suggested that CRISPR/Cas9 could be used as an efficient technique to introduce HLA-A gene knockout; thus, it can considerably lessen the burden of finding a fully matched donor by lowering the alleles required for a successful HSCT.
Background
Allogeneic stem cells are the most potent sources for replacing cell, tissue, and organ malfunctions. The clinical use of these stem cells has been limited due to the risk of immune system rejection due to the incompatibility of human leukocyte (HLA) antigens between donors and recipients. To overcome this limitation, we used the CRISPR/Cas9 system to eliminate the β2 microglobulin (B2M) gene, which plays a vital role in the expression of HLA class I.
Results
Non-viral transfer of two gRNAs targeting the first exon and intron in the B2M gene results in large deletions in the target region. In addition, the results of this study showed that 11.11% and 22.22% of cells received genomic changes as homozygous and heterozygous, respectively.
Conclusion
In conclusion, we have shown that the dual guide RNA strategy is a simple and efficient method for modifying genes. As a result, these cells can be proposed as universal cells that are not detectable in the cell therapy system and transplantation by the receptor immune system.
Single cell-based techniques have drawn the attention of researchers, because they provide invaluable information of various domains ranging from genomics to epigenetics, transcriptomics, and proteomics. Single cell-derived clones provide a reliable and sustainable source of genetic information due to the homogeneity of the cell population. Aiming to obtain single-cell clones, several approaches were engineered, among which, the Limiting dilution approach stands out as a cost-effective and unsophisticated, and easy-to-apply method. Here, we demonstrate how to acquire single cell-derived clones through a simple 1:10 diluting from genetically modified heterogeneous cell populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.