Introduction: Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration.
Porous titanium scaffolds are a promising class of biomaterials for grafting large bone defects, because titanium provides sufficient mechanical support, whereas its porous structure allows bone ingrowth resulting in good osseointegration. To reinforce porous titanium scaffolds with biological cues that enhance and continue bone regeneration, scaffolds can be incorporated with bioactive gels for time-and dose-controlled delivery of multiple growth factors (GFs). In this study, critical femoral bone defects in rats were grafted with porous titanium scaffolds incorporated with nanostructured colloidal gelatin gels. Gels were loaded with bone morphogenetic protein-2 (BMP-2, 3 mg), fibroblast growth factor-2 (FGF-2, 0.6 mg), BMP-2, and FGF-2 (BMP-2/FGF-2, ratio 5:1) or were left unloaded. GF delivery was controlled by fine tuning the crosslinking density of oppositely charged nanospheres. Grafted femurs were evaluated using in vivo and ex vivo micro-CT, histology, and three-point bending tests. All porous titanium scaffolds containing GF-loaded gels accelerated and enhanced bone regeneration: BMP-2 gels gave an early increase (0-4 weeks), and FGF-2 gels gave a late increase (8-12 weeks). Interestingly, stimulatory effects of 0.6 mg FGF-2 were similar to a fivefold higher dose of BMP-2 (3 mg). BMP-2/FGF-2 gels gave more bone outside the porous titanium scaffolds than gels with only BMP-2 or FGF-2, resulted in bridging of most defects and showed superior bone-implant integrity in three-point bending tests. In conclusion, incorporation of nanostructured colloidal gelatin gels capable of time-and dose-controlled delivery of BMP-2 and FGF-2 in porous titanium scaffolds is a promising strategy to enhance and continue bone regeneration of large bone defects.
Objective. Although articular cartilage has evolved to facilitate joint mobilization, severe loading can induce chondrocyte apoptosis, which is related to the progression of osteoarthritis (OA). To avoid apoptosis, chondrocytes synthesize heat-shock proteins (HSPs). This study was undertaken to examine the roles of Hsp70 and Hsp90 in biomechanically induced OA, and the possibility of using Hsp90 inhibition as an intervention strategy for OA management.Methods. OA was biomechanically induced in rats by means of strenuous running. Disease progression was compared between running rats treated with Hsp90 inhibitor and untreated running controls. Hsp70 and Hsp90 protein levels in articular cartilage were determined by Western blotting. OA progression was monitored using contrast-enhanced micro-computed tomography to measure cartilage degradation and subchondral bone changes and single-photon-emission computed tomography to examine synovial macrophage activation and histologic features.Results. Chronic cartilage loading led to early OA development, characterized by degeneration of cartilage extracellular matrix. In vivo Hsp90 inhibition resulted in increased Hsp70 synthesis, which suggests that Hsp90 activity limits Hsp70 production. Hsp90 inhibitor treatment increased cartilage sulfated glycosaminoglycan levels to concentrations even beyond baseline and protected against cartilage degradation, stimulated subchondral bone thickness, and suppressed macrophage activation.Conclusion. Our findings indicate that Hsp90 plays a pivotal role in biomechanically induced chondrocyte stress responses. Intervention strategies that inhibit Hsp90 can potentially protect or improve cartilage health and might prevent OA development.
Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine–aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets.Electronic supplementary materialThe online version of this article (doi:10.1007/s00430-016-0476-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.