Neural Machine Translation (NMT) has seen a tremendous spurt of growth in the last twenty years and has already entered a mature phase. While considered the most widely used solution for Machine Translation, its performance on low-resource language pairs remains sub-optimal compared to the high-resource counterparts due to the unavailability of large parallel corpora. Therefore, the implementation of NMT techniques for low-resource language pairs has been receiving the spotlight recently, thus leading to substantial research on this topic. This paper presents a detailed survey of research advancements in low-resource language NMT (LRL-NMT) and quantitative analysis to identify the most popular techniques. We provide guidelines to select the possible NMT technique for a given LRL data setting based on our findings. We also present a holistic view of the LRL-NMT research landscape and provide recommendations to enhance the research efforts further.
Neural Machine Translation (NMT) has seen a tremendous spurt of growth in less than ten years, and has already entered a mature phase. While considered as the most widely used solution for Machine Translation, its performance on low-resource language pairs still remains sub-optimal compared to the high-resource counterparts, due to the unavailability of large parallel corpora. Therefore, the implementation of NMT techniques for low-resource language pairs has been receiving the spotlight in the recent NMT research arena, thus leading to a substantial amount of research reported on this topic. This paper presents a detailed survey of research advancements in low-resource language NMT (LRL-NMT), along with a quantitative analysis aimed at identifying the most popular solutions. Based on our findings from reviewing previous work, this survey paper provides a set of guidelines to select the possible NMT technique for a given LRL data setting. It also presents a holistic view of the LRL-NMT research landscape and provides a list of recommendations to further enhance the research efforts on LRL-NMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.