Flavonoids are polyphenolic secondary metabolites synthesized by plants and fungus with various pharmacological effects. Due to their plethora of biological activities, they have been studied extensively in drug development. They have been shown to modulate the activity of a NAD+-dependent histone deacetylase, SIRT6. Because SIRT6 has been implicated in longevity, metabolism, DNA-repair, and inflammatory response reduction, it is an interesting target in inflammatory and metabolic diseases as well as in cancer. Here we show, that flavonoids can alter SIRT6 activity in a structure dependent manner. Catechin derivatives with galloyl moiety displayed significant inhibition potency against SIRT6 at 10 µM concentration. The most potent SIRT6 activator, cyanidin, belonged to anthocyanidins, and produced a 55-fold increase in SIRT6 activity compared to the 3–10 fold increase for the others. Cyanidin also significantly increased SIRT6 expression in Caco-2 cells. Results from the docking studies indicated possible binding sites for the inhibitors and activators. Inhibitors likely bind in a manner that could disturb NAD+ binding. The putative activator binding site was found next to a loop near the acetylated peptide substrate binding site. In some cases, the activators changed the conformation of this loop suggesting that it may play a role in SIRT6 activation.
Purpose: Diabetes has been associated with increased risk of Parkinson's disease (PD). Diabetes medications have been suggested as a possible explanation, but findings have been inconsistent. More information on the role of exposure in different time windows is needed because PD has long onset. We assessed the association between use of different diabetes medication categories and risk of PD in different exposure periods.Methods: A case-control study restricted to people with diabetes was performed as part of nationwide register-based Finnish study on PD (FINPARK). We included 2017 cases (diagnosed 1999-2015) with PD and 7934 controls without PD. Diabetes medication use was identified from Prescription Register and categorized to insulins, biguanides, sulfonylureas, thiazolidinediones (TZDs), dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) analogues and glinide. Exposure for each medication class was determined as none, at least 3 years before outcome and only within the three-year lag time before PD outcome.Results: The use of insulins, biguanides, sulfonylureas, DPP-4 inhibitors, GLP-1 analogues or glinides was not associated with PD. Use of TZDs before lag time compared to non-use of TZDs (adjusted odds ratio (OR) 0.78; 95% Confidence interval (CI) 0.64-0.95) was associated with decreased risk of PD.Conclusions: Our nationwide case-control study of people with diabetes found no robust evidence on the association between specific diabetes medication classes and risk of PD. Consistent with earlier studies, TZD use was associated with slightly decreased risk of PD. The mechanism for this should be verified in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.