Introduction Sepsis-related multiple organ dysfunction is a common cause of death in the intensive care unit. The effect of sepsis on markers of tissue repair is only partly understood. The aim of this study was to measure markers of collagen synthesis and degradation during sepsis and investigate the association with disease severity and outcome.
Early diagnosis is essential but challenging in severe sepsis. Quantifying and comparing metabolite concentrations in serum has been suggested as a new diagnostic tool. Here we used proton nuclear magnetic resonance spectroscopy (1H NMR) based metabolomics to analyze the possible differences in metabolite concentrations between sera taken from septic patients and healthy controls, as well as between sera of surviving and non-surviving sepsis patients. We took serum samples from 44 sepsis patients when the first sepsis induced organ dysfunction was found. Serum samples were also collected from 14 age and gender matched healthy controls. The samples were analyzed by quantitative 1H NMR spectroscopy for non-lipid metabolites. We found that the serum levels of glucose, glycine, 3-hydroxybutyrate, creatinine and glycoprotein acetyls (mostly alpha-1-acid glycoprotein, AGP) were significantly (p < 0.05) higher in sepsis compared to healthy sera, whereas citrate and histidine were significantly (p < 0.05) lower in sepsis patients compared to healthy controls. We found statistically significantly higher serum lactate and citrate concentrations in non-survivors compared to 30-day survivors. According to our study, 3-hydroxybutyrate, citrate, glycine, histidine, and AGP are candidates for further studies to enable identification of phenotype association in the early stages of sepsis.
IntroductionMatrix metalloproteinases (MMPs) have various roles in inflammatory states. They seem to be able to modulate endothelial barriers and regulate the activity of chemokines and cytokines. The timely development of the levels during severe sepsis and thereafter have not been investigated. In addition it was of interest to study alterations of MMP-levels in intact skin, as the skin is the largest barrier against external pathogens and MMPs have not been studied at organ level in human sepsis. The aim of this study was to investigate the timely development of serum and skin MMP-2, -8 and -9 levels in human severe sepsis and their association with disease severity and mortality.MethodsForty-four patients with severe sepsis and fifteen healthy controls were included in this prospective longitudinal study. The amounts of MMP-2, -8 and -9 were analyzed from serum at days 1, 4, 6, 8, and 10, and from skin suction blister fluid at days 1 and 5 from the beginning of severe sepsis. Additionally, samples from the survivors were obtained after three and six months.ResultsThe levels of MMP-2 and -8 were up-regulated in severe sepsis in comparison to healthy controls in skin blister fluid and serum. Compared to the controls MMP-9 levels were lower in sepsis from the fourth day on in serum and both the first and fifth day in skin blister fluid. Active forms of MMP-2 and -9 were present only in severe sepsis. The non-survivors had higher pro- and active MMP-2 levels than the survivors in skin blister fluid samples. Furthermore, MMP-2 levels were more pronounced in blister fluid and serum samples in patients with more severe organ failures. In the survivors at 3 and 6 month follow-up the MMP levels had returned to normal.ConclusionsMMP-2 and -8 are elevated in serum and blister fluid in severe sepsis, implying that they may play a significant role in the pathogenesis of severe sepsis and organ dysfunctions. Active forms of MMP-2 and 9 were only present in patients with severe sepsis, and higher MMP-2 levels in skin blister and serum were associated with more severe organ dysfunctions.
Introduction The effect of sepsis on epidermal wound healing has not been previously studied. It was hypothesised that epidermal wound healing is disturbed in severe sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.