Expression of the insulin-like growth factor (IGF) system was investigated in mouse renal development and physiology, using non radioactive in situ hybridization and quantitative RT-PCR. IGF-I mRNA levels increased after birth and were confined to distal tubules and peritubular capillaries in the outer medulla. IGF-II mRNA levels were high in developing kidneys and peaked after birth. The type I receptor mRNA expression pattern mostly parallelled those of IGF-I and IGF-II. The IGF binding proteins (IGFBP's) showed weak mRNA expression for IGFBP-1 and -6. High fetal mRNA levels were measured for IGFBP-2, showing a similar profile in time as observed for IGF-II. Low fetal IGFBP-3 and -5 mRNA levels increased after birth. IGFBP-2, -4 and -5 mRNA expression was localized to differentiating cells. In the mature kidney predominant expression was confined to proximal tubules (IGFBP-4), thin limbs of Henle's Loop (IGFBP-2), glomerular mesangial cells (IGFBP-5) and peritubular capillaries of the medulla (IGFBP-5). IGFBP-3 mRNA was exclusively expressed in endothelial cells of the renal capillary system. Distinct mRNA expression for each member of the IGF system may point to specific roles in development and physiology of the mouse kidney.
The insulin-like growth factor (IGF) system is an important regulator of fetal growth and differentiation. IGF bioavailability is modulated by IGF binding proteins (IGFBPs). We have generated six different antisera, directed to synthetic peptide fragments of mouse IGFBP-1 through -6. The specificity of the produced antisera was demonstrated by enzyme-linked immunosorbent assay, Western blotting, and by immunohistochemistry on sections of mouse embryos of 13.5 days post coitum. Specificity for the IGFBP-2 through -6 antisera also was confirmed immunohistochemically in liver and lung of corresponding gene deletion (knock-out) mutant mice and wild-type litter mates. Immunohistochemistry and messenger RNA (mRNA) in situ hybridization on sections of mouse embryos of 13.5 days post coitum revealed tissue-specific expression patterns for the six IGFBPs. The only site of IGFBP-1 protein and mRNA production was the liver. IGFBP-2, -4, and -5 protein and mRNA were detected in various organs and tissues. IGFBP-3 and -6 protein and mRNA levels were low. In several tissues, such as lung, liver, kidney, and tongue, more than one IGFBP (protein and mRNA) could be detected. Differences between mRNA and protein localization were extensive for IGFBP-3, -5, and -6, suggesting that these IGFBPs are secreted and transported. These results confirm the different spatial localization of the IGFBPs, on the mRNA and protein level. The overlapping mRNA and protein localization for IGFBP-2 and -4, on the other hand, may indicate that these IGFBPs also function in an auto- or paracrine manner.
Insulin-like growth factors I and II (IGFI and II) are synthesized by anterior pituitary cells and participate in cellular growth and differentiation, as well as the control of pituitary hormone secretion. Type 1 and 2 IGF receptors (IGFR1 and IGFR2) and the six IGF binding proteins (IGFBPs), which modulate IGF effects, are expressed in the anterior pituitary gland. We used in situ hybridization to analyse the temporal expression pattern of IGFI and II, IGFR1 and 2 and IGFBP1-6 in the anterior pituitary gland during postnatal development in both male and female rats (10, 20, 30, 40 and 60 days of age). We found all of the components of the IGF system to be expressed in the anterior pituitary gland, with each having a specific temporal pattern of expression. In addition, there exist differences between the sexes in the expression of some components of the IGF system. These data emphasize that in the anterior pituitary gland the IGF system is under tight regulation during postnatal life when this gland continues to develop. The distinct temporal expression of each member of the IGF system may indicate specific roles in the development and physiology of the anterior pituitary gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.