CD4+CD25+ regulatory T (Treg) cells play an essential role in maintaining tolerance to self and nonself. In several models of T cell-mediated (auto) immunity, Treg cells exert protective effects by the inhibition of pathogenic T cell responses. In addition, Treg cells can modulate T cell-independent inflammation. We now show that CD4+CD25+ Treg cells are able to shed large amounts of TNFRII. This is paralleled by their ability to inhibit the action of TNF-α both in vitro and in vivo. In vivo, Treg cells suppressed IL-6 production in response to LPS injection in mice. In contrast, Treg cells from TNFRII-deficient mice were unable to do so despite their unhampered capacity to suppress T cell proliferation in a conventional in vitro suppression assay. Thus, shedding of TNFRII represents a novel mechanism by which Treg cells can inhibit the action of TNF, a pivotal cytokine driving inflammation.
The use of probiotics as a food supplement has gained tremendous interest in the last few years as beneficial effects were reported in gut homeostasis and nutrient absorption but also in immunocompromised patients, supporting protection from colonization or infection with pathogenic bacteria or fungi. As a treatment approach for inflammatory bowel diseases, a suitable probiotic strain would ideally be one with a low immunogenic potential. Insight into the immunogenicities and types of T-cell responses induced by potentially probiotic strains allows a more rational selection of a particular strain. In the present study, the bacterial strains Bifidobacterium breve (NumRes 204), Lactobacillus rhamnosus (NumRes1), and Lactobacillus casei (DN-114 001) were compared concerning their capacity to induce inflammatory responses in terms of cytokine production by human and mouse primary immune cells. It was demonstrated that the B. breve strain induced lower levels of the proinflammatory cytokine gamma interferon (IFN-␥) than the tested L. rhamnosus and L. casei strains. Both B. breve and lactobacilli induced cytokines in a Toll-like receptor 9 (TLR9)-dependent manner, while the lower inflammatory profile of B. breve was due to inhibitory effects of TLR2. No role for TLR4, NOD2, and C-type lectin receptors was apparent. In conclusion, TLR signaling is involved in the differentiation of inflammatory responses between probiotic strains used as food supplements.
IL-17-producing CD4(+) T cells are increased in patients with early active axial SpA both with and without MRI abnormalities. This finding shows that the frequency of IL-17-producing CD4(+) T cells is enhanced in the early stages of disease.
BackgroundMucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise bacterial metabolites presented by MHC class I-related protein 1 (MR1). Bacterial dysbiosis has been implicated in auto-inflammatory disease development. We investigated MAIT cells in early, untreated rheumatoid arthritis (RA) and spondyloarthritis (SpA) patients.MethodsBlood and synovial fluid mononuclear cells obtained from patients (SpA/RA) and controls were stimulated with fixed Escherichia coli to provide MAIT ligand. Cells were analysed by flow cytometry and MAIT cells were identified by MR1-5-OP-RU tetramers. Synovial biopsies were studied by confocal microscopy.ResultsPeripheral and synovial CD3+ MR1-tet+ MAIT cell frequencies were comparable in all groups. MAIT cells were detected in RA and SpA synovium based on CD3, CD161 and Vα7.2 expression. Peripheral RA MAIT cells were mostly CD4+ (controls 8.3%, SpA 12.3%, RA 52.6%; p < 0.001) and CD161 expression was strongly reduced (control mean fluorescence intensity (MFI) = 2348, SpA MFI = 2219, RA MFI = 226; p < 0.001). MAIT cells were hyporesponsive, shown by minimal upregulation of CD25 and CD69 to E. coli stimulation (control, CD25 MFI = 177, CD69 MFI = 1307; SpA, CD25 MFI = 95, CD69 MFI = 1257; RA, CD25 MFI = 0, CD69 MFI = 467; p < 0.001 and p = 0.01 respectively).ConclusionIn early untreated RA patients, the peripheral MAIT cell composition was altered, with reduced levels of CD161 expression, and cells were hyporesponsive to stimulation. MAIT cell dysfunction may provide a link between the microbiome and development of RA.Electronic supplementary materialThe online version of this article (10.1186/s13075-018-1799-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.