VHH-IR led to a much faster tumour accumulation with high tumour to background ratios as compared to trastuzumab-IR allowing same-day imaging for clinical investigation as well as image-guided surgery.
Purpose: Probody therapeutic CX-072 is a protease-activatable antibody that is cross-reactive with murine and human programmed death-ligand 1 (PD-L1). CX-072 can be activated in vivo by proteases present in the tumor microenvironment, thereby potentially reducing peripheral, anti-PD-L1-mediated toxicities. To study its targeting of PD-L1-expressing tissues, we radiolabeled CX-072 with the PET isotope zirconium-89 ( 89 Zr).Experimental Design: 89 Zr-labeled CX-072, nonspecific Probody control molecule (PbCtrl) and CX-072 parental antibody (CX-075) were injected in BALB/c nude mice bearing human MDA-MB-231 tumors or C57BL/6J mice bearing syngeneic MC38 tumors. Mice underwent serial PET imaging 1, 3, and 6 days after intravenous injection (pi), followed by ex vivo biodistribution. Intratumoral 89 Zr-CX-072 distribution was studied by autoradiography on tumor tissue sections, which were subsequently stained for PD-L1 by IHC. Activated CX-072 species in tissue lysates were detected by Western capillary electrophoresis.Results: PET imaging revealed 89 Zr-CX-072 accumulation in MDA-MB-231 tumors with 2.1-fold higher tumor-to-blood ratios at 6 days pi compared with 89 Zr-PbCtrl. Tumor tissue autoradiography showed high 89 Zr-CX-072 uptake in high PD-L1-expressing regions. Activated CX-072 species were detected in these tumors, with 5.3-fold lower levels found in the spleen. Furthermore, 89 Zr-CX-072 uptake by lymphoid tissues of immunecompetent mice bearing MC38 tumors was low compared with 89 Zr-CX-075, which lacks the Probody design.Conclusions: 89 Zr-CX-072 accumulates specifically in PD-L1expressing tumors with limited uptake in murine peripheral lymphoid tissues. Our data may enable clinical evaluation of 89 Zr-CX-072 whole-body distribution as a tool to support CX-072 drug development (NCT03013491).
BackgroundTo better predict response to immune checkpoint therapy and toxicity in healthy tissues, insight in the in vivo behavior of immune checkpoint targeting monoclonal antibodies is essential. Therefore, we aimed to study in vivo pharmacokinetics and whole-body distribution of zirconium-89 (89Zr) labeled programmed cell death protein-1 (PD-1) targeting pembrolizumab with positron-emission tomography (PET) in humanized mice.MethodsHumanized (huNOG) and non-humanized NOG mice were xenografted with human A375M melanoma cells. PET imaging was performed on day 7 post 89Zr-pembrolizumab (10 µg, 2.5 MBq) administration, followed by ex vivo biodistribution studies. Other huNOG mice bearing A375M tumors received a co-injection of excess (90 µg) unlabeled pembrolizumab or 89Zr-IgG4 control (10 µg, 2.5 MBq). Tumor and spleen tissue were studied with autoradiography and immunohistochemically including PD-1.ResultsPET imaging and biodistribution studies showed high 89Zr-pembrolizumab uptake in tissues containing human immune cells, including spleen, lymph nodes and bone marrow. Tumor uptake of 89Zr-pembrolizumab was lower than uptake in lymphoid tissues, but higher than uptake in other organs. High uptake in lymphoid tissues could be reduced by excess unlabeled pembrolizumab. Tracer activity in blood pool was increased by addition of unlabeled pembrolizumab, but tumor uptake was not affected. Autoradiography supported PET findings and immunohistochemical staining on spleen and lymph node tissue showed PD-1 positive cells, whereas tumor tissue was PD-1 negative.Conclusion89Zr-pembrolizumab whole-body biodistribution showed high PD-1-mediated uptake in lymphoid tissues, such as spleen, lymph nodes and bone marrow, and modest tumor uptake. Our data may enable evaluation of 89Zr-pembrolizumab whole-body distribution in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.