35S-labeled derivatives of the insecticides nodulisporic acid and ivermectin were synthesized and demonstrated to bind with high affinity to a population of receptors in Drosophila head membranes that were previously shown to be associated with a glutamate-gated chloride channel. Nodulisporic acid binding was modeled as binding to a single population of receptors. Ivermectin binding was composed of at least two kinetically distinct receptor populations, only one of which was associated with nodulisporic acid binding. The binding of these two ligands was modulated by glutamate, ivermectin, and antagonists of invertebrate gamma-aminobutyric acid (GABA)ergic receptors. Because solubilized nodulisporic acid and ivermectin receptors comigrated as 230-kDa complexes by gel filtration, antisera specific for both the Drosophila glutamate-gated chloride channel subunit GluCl alpha (DmGluCl alpha) and the GABA-gated chloride channel subunit Rdl (DmRdl) proteins were generated and used to examine the possible coassembly of these two subunits within a single receptor complex. DmGluCl alpha antibodies immunoprecipitated all of the ivermectin and nodulisporic acid receptors solubilized by detergent from Drosophila head membranes. DmRdl antibodies also immunoprecipitated all solubilized nodulisporic receptors, but only approximately 70% of the ivermectin receptors. These data suggest that both DmGluCl alpha and DmRdl are components of nodulisporic acid and ivermectin receptors, and that there also exists a distinct class of ivermectin receptors that contains the DmGluCl alpha subunit but not the DmRdl subunit. This co-association of DmGluCl alpha and DmRdl represents the first biochemical and immunological evidence of coassembly of subunits from two different subclasses of ligand-gated ion channel subunits.
SummaryA method for scavenging excess amines in sulfur-35-labeled radioligand preparations using fluorous scavengers has been developed in an effort to simplify the purification. This fluorous scavenging has been shown to be effective at removing excess amines from several [35 S]sulfonylation mixtures. In many cases this results in one less semipreparative HPLC purification, and thus in higher radiochemical yield and time savings. Fluorous scavenging was compared to the use of a solid-phase resin (PSisocyanate) and determined to be approximately equal with respect to recovery of radioactive product. However, the fluorous scavengers were shown to be more effective than solid-phase resin for removing basic amine components.
High throughput inhibition screens for human cytochrome P450s (CYPs) are being used in preclinical drug metabolism to support drug discovery programs. The versatility of scintillation proximity assay (SPA) technology has enabled the development of a homogeneous high throughput assay for cytochrome P450 2D6 (CYP2D6) inhibition screen using [O-methyl-(14)C]dextromethorphan as substrate. The basis of the assay was the trapping of the O-demethylation product, [(14)C]HCHO, on SPA beads. Enzyme kinetics parameters V(max) and apparent K(m), determined using pooled human liver microsomes and microsomes from baculovirus cells coexpressing human CYP2D6 and NADPH-cytochrome P450 reductase, were 245 pmol [(14)C]HCHO/min/mg protein and 11 microM, and 27 pmol [(14)C]HCHO/min/pmol and 1.6 microM, respectively. In incubations containing either pooled microsomes or recombinant CYP2D6, [(14)C]dextromethorphan O-demethylase activity was inhibited in the presence of quinidine (IC(50) = 1.0 microM and 20 nM, respectively). By comparison, inhibitors selective for other CYP isoforms were relatively weak (IC(50) > 25 microM). In agreement, a selective CYP2D6 inhibitory monoclonal antibody caused greater than 90% inhibition of [(14)C]dextromethorphan O-demethylase activity in human liver microsomes, whereas CYP2C9/19- and CYP3A4/5-selective antibodies elicited a minimal inhibitory effect. SPA-based [(14)C]dextromethorphan O-demethylase activity was also shown to correlate (r(2) = 0.6) with dextromethorphan O-demethylase measured by high-performance liquid chromatography in a bank of human liver microsomes (N = 15 different organ donors). In a series of known CYP2D6 inhibitors/substrates, the SPA-based assay resolved potent inhibitors (IC(50) < 2 microM) from weak inhibitors (IC(50) >or= 20 microM). It is concluded that the SPA-based assay described herein is suitable for CYP2D6 inhibition screening using either native human liver microsomes or cDNA-expressed CYP2D6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.