In addition to performing its essential transport function, the sodium pump also activates multiple cell signaling pathways in response to digitalis drugs such as ouabain. Based mainly on cell-free studies with mixtures of purified Src kinase and Na(+)/K(+)-ATPase, a well-advocated hypothesis on how ouabain initiates the activation of signaling pathways is that there is a preexisting physiological complex of inactive Src bound to the α-subunit of Na(+)/K(+)-ATPase, and that ouabain binding to this subunit disrupts the bound Src and activates it. Because of the published disagreements of the results of such cell-free experiments of two other laboratories, our aim was to attempt the resolution of these discrepancies. We reexamined the effects of ouabain, vanadate, and oligomycin on mixtures of Src, Na(+)/K(+)-ATPase, Mg(2+), and ATP as specified in prior studies; and assayed for Src-418 autophosphorylation as the measure of Src activation. In contrast to the findings of the proponents of the above hypothesis, our results showed similar effects of the three inhibitors of Na(+)/K(+)-ATPase; indicating that Src activation in such experiments is primarily due to the ATP-sparing effect of the ATPase inhibitor on the mixture of two enzymes competing for ATP. We conclude that there is no solid evidence for direct molecular interaction of Src with Na(+)/K(+)-ATPase under physiological conditions.
To evaluate previously proposed functions of renal caveolar Na+/K+-ATPase, we modified the standard procedures for the preparation of the purified membrane-bound kidney enzyme, separated the caveolar and noncaveolar pools, and compared their properties. While the subunits of Na+/K+-ATPase (α,β,γ) constituted most of the protein content of the noncaveolar pool, the caveolar pool also contained caveolins and major caveolar proteins annexin-2 tetramer and E-cadherin. Ouabain-sensitive Na+/K+-ATPase activities of the two pools had similar properties and equal molar activities, indicating that the caveolar enzyme retains its ion transport function and does not contain nonpumping enzyme. As minor constituents, both caveolar and noncaveolar pools also contained Src, EGFR, PI3K, and several other proteins known to be involved in stimulous-induced signaling by Na+/K+-ATPase, indicating that signaling function is not limited to the caveolar pool. Endogenous Src was active in both pools but was not further activated by ouabain, calling into question direct interaction of Src with native Na+/K+-ATPase. Chemical cross-linking, co-immunoprecipitation, and immunodetection studies showed that in the caveolar pool, caveolin-1 oligomers, annexin-2 tetramers, and oligomers of the α,β,γ-protomers of Na+/K+-ATPase form a large multiprotein complex. In conjunction with known roles of E-cadherin and the β-subunit of Na+/K+-ATPase in cell adhesion and noted intercellular β,β-contacts within the structure of Na+/K+-ATPase, our findings suggest that interacting caveolar Na+/K+-ATPases located at renal adherens junctions maintain contact of two adjacent cells, conduct essential ion pumping, and are capable of locus-specific signaling in junctional cells.
Background Use of low doses of digitalis to prevent the development of heart failure was advocated decades ago, but conflicting results of early animal studies dissuaded further research on this issue. Recent discoveries of digitalis effects on cell signal pathways prompted us to reexamine the possibility of this prophylactic action of digitalis. The specific aim of the present study was to determine if subinotropic doses of ouabain would prevent pressure overload-induced cardiac remodeling in the mouse by activating phosphoinositide 3-kinase α (PI3Kα).ResultsStudies were done on an existing transgenic mouse deficient in cardiac PI3Kα (p85-KO) but with normal cardiac contractility, a control mouse (Con), and on cultured adult cardiomyocytes. In Con myocytes, but not in p85-KO myocytes, ouabain activated PI3Kα and Akt, and caused cell growth. This occurred at low ouabain concentrations that did not activate the EGFR-Src/Ras/Raf/ERK cascade. Con and p85-KO mice were subjected to transverse aortic constriction (TAC) for 8 weeks. A subinotropic dose of ouabain (50 µg/kg/day) was constantly administrated by osmotic mini-pumps for the first 4 weeks. All mice were monitored by echocardiography throughout. Ouabain early treatment attenuated TAC-induced cardiac hypertrophy and fibrosis, and improved cardiac function in TAC-operated Con mice but not in TAC-operated p85-KO mice. TAC downregulated α2-isoform of Na+/K+-ATPase but not its α1-isoform in Con hearts, and ouabain treatment prevented the downregulation of α2-isoform. TAC-induced reduction of α2-isoform did not occur in p85-KO hearts.ConclusionsOur results show that (a) safe doses of ouabain prevent or delay cardiac remodeling of pressure overloaded mouse heart; and (b) these prophylactic effects are due to ouabain binding to α2-isoform resulting in the selective activation of PI3Kα. Our findings also suggest that potential prophylactic use of digitalis for prevention of heart failure in man deserves serious consideration.Electronic supplementary materialThe online version of this article (doi:10.1186/s13578-015-0053-7) contains supplementary material, which is available to authorized users.
Because nearly all structure/function studies on Na ؉ / K ؉ -ATPase have been done on enzymes prepared in the presence of SDS, we have studied previously unrecognized consequences of SDS interaction with the enzyme. When the purified membrane-bound kidney enzyme was solubilized with SDS or TDS concentrations just sufficient to cause complete solubilization, but not at concentrations severalfold higher, the enzyme retained quaternary structure, exhibiting ␣,␣-, ␣,-, ,-, and ␣,␥-associations as detected by chemical cross-linking. The presence of solubilized oligomers was confirmed by sucrose density gradient centrifugation. This solubilized enzyme had no ATPase activity and was not phosphorylated by ATP, but it retained the ability to occlude Rb ؉ and Na ؉ . This, and comparison of cross-linking patterns obtained with different reagents, suggested that the transmembrane domains of the enzyme are more resistant to SDSinduced unfolding than its other domains. These findings (a) indicate that the partially unfolded oligomer(s) retaining partial function is the intermediate in the SDS-induced denaturation of the native membrane enzyme having the minimum oligomeric structure of (␣,,␥) 2 and (b) suggest potential functions for Na ؉ /K ؉ -ATPase with intrinsically unfolded domains. Mixtures of solubilized/ partially unfolded enzyme and membrane-bound enzyme exhibited cross-linking patterns and Na ؉ occlusion capacities different from those of either enzyme species, suggesting that the two interact. Formation of the partially unfolded enzyme during standard purification procedure for the preparation of the membrane-bound enzyme was shown, indicating that it is necessary to ensure the separation of the partially unfolded enzyme from the membrane-bound enzyme to avoid the distortion of the properties of the latter.
Digitalis drugs are selective inhibitors of the plasma membrane Na+/K+-ATPase. There are many studies on molecular mechanisms of digitalis interaction with purified pig kidney enzyme, with the tacit assumption that it is a good model of human kidney enzyme. However, previous studies on crude or recombinant human kidney enzymes are limited, and have not resulted in consistent findings on their digitalis sensitivities. Hence, we prepared comparably purified enzymes from human and pig kidneys and determined inhibitory constants of digoxin, ouabain, ouabagenin, bufalin, and marinobufagenin (MBG) on enzyme activity under optimal turnover conditions. We found that each compound had the same potency against the two enzymes, indicating that (i) the pig enzyme is an appropriate model of the human enzyme, and (ii) prior discrepant findings on human kidney enzymes were either due to structural differences between the natural and recombinant enzymes or because potencies were determined using binding constants of digitalis for enzymes under nonphysiological conditions. In conjunction with previous findings, our newly determined inhibitory constants of digitalis compounds for human kidney enzymes indicate that (i) of the compounds that have long been advocated to be endogenous hormones, only bufalin and MBG may act as such at kidney tubules, and (ii) beneficial effects of digoxin, the only digitalis with extensive clinical use, does not involve its inhibitory effect on renal tubular Na+/K+-ATPase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.