Bycatch (accidental drowning in fishing nets) is a significant problem for some marine mammal species, but can be difficult to diagnose as there are no pathognomonic gross or histological lesions. In human medicine, biomarkers such as S100B are increasingly being used to investigate hypoxic-ischemic syndromes, but, to the authors’ knowledge, studies using this marker have not been reported for marine mammal species. The aims of the current study were to determine baseline postmortem S100B levels in a pinniped species, and to determine whether S100B levels were stable over a postmortem interval of 48 hr. Aqueous humor, which is simple to collect and avoids many of the problems associated with postmortem collection of blood, was used as a surrogate for serum. S100B was detected in the aqueous humor of acute deaths (<15 min) and was stable for up to 48 hr, with a wider variation in values at the 48-hr time interval.
Periods of disuse or physical inactivity increases bone porosity and decreases bone mineral density, resulting in a loss of bone mechanical competence in many animals. Although large hibernators like bears and marmots prevent bone loss during hibernation, despite long periods of physical inactivity, some small hibernators do lose bone during hibernation. Little pocket mice (Perognathus longimembris) remain underground during winter hibernation and undergo bouts of torpor and interbout arousals, but the torpor bout duration is shorter than other rodent hibernators. Additionally, little pocket mice may enter torpor during summer estivation. In this study, cortical and trabecular bone architectural, mineral, and mechanical properties were analyzed for femurs from little pocket mice captured during 8 different months (March to October) to determine seasonal effects on bone. There were no differences in any bone properties between the pre-hibernation month of October and the post-hibernation month of March, suggesting winter hibernation did not adversely affect bone properties. However, cortical area was higher in March than April, May, and June. Bone mechanical and osteocyte lacunar properties were not different between any months. Trabecular bone in the distal femoral epiphysis showed no changes between months. The distal femoral metaphyseal region showed higher trabecular spacing and lower trabecular number in May than August, otherwise, there were no differences in trabecular parameters. The few monthly differences in bone properties may be due to physical inactivity from periodic summer estivation or from the timing of birth and growth in spring and summer months. Anat Rec, 300:2175-2183, 2017. © 2017 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.