IntroductionUncoupling protein 2 (UCP2) reduces production of reactive oxygen species (ROS) by mitochondria. ROS overproduction is one of the major contributors to the pathogenesis of chronic diabetic complications, such as diabetic kidney disease (DKD). Thus, deleterious polymorphisms in the UCP2 gene are candidate risk factors for DKD. In this study, we investigated whether UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms were associated with DKD in patients with type 2 diabetes mellitus (T2DM), and whether they had an effect on UCP2 gene expression in human kidney tissue biopsies.Materials and MethodsIn a case-control study, frequencies of the UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms as well as frequencies of the haplotypes constituted by them were analyzed in 287 T2DM patients with DKD and 281 T2DM patients without this complication. In a cross-sectional study, UCP2 gene expression was evaluated in 42 kidney biopsy samples stratified according to the presence of the UCP2 mutated -866A/55Val/Ins haplotype.ResultsIn the T2DM group, multivariate logistic regression analysis showed that the -866A/55Val/Ins haplotype was an independent risk factor for DKD (OR = 2.136, 95% CI 1.036–4.404), although neither genotype nor allele frequencies of the individual polymorphisms differed between case and control groups. Interestingly, T2DM patients carrying the mutated haplotype showed decreased estimated glomerular filtration rate (eGFR) when compared to subjects with the reference haplotype (adjusted P= 0.035). In kidney biopsy samples, UCP2 expression was significantly decreased in UCP2 mutated haplotype carriers when compared to kidneys from patients with the reference haplotype (0.32 ± 1.20 vs. 1.85 ± 1.16 n fold change; adjusted P< 0.000001).DiscussionData reported here suggest that the UCP2 -866A/55Val/Ins haplotype is associated with an increased risk for DKD and with a lower eGFR in T2DM patients. Furthermore, this mutated haplotype was associated with decreased UCP2 gene expression in human kidneys.
The potential association between the K121Q (A/C, rs1044498) polymorphism in the ectonucleotide pyrophosphatase/phosphodiesterase (ENPP1) gene and risk of diabetic kidney disease (DKD) has been investigated. Nevertheless, the effect of this variant on DKD risk is still under debate, and conflicting results have been reported. To this date, no meta-analysis has evaluated the association of the K121Q polymorphism with DKD. This paper describes the first meta-analysis conducted to evaluate whether the ENPP1K121Q polymorphism is associated with DKD. A literature search was conducted to identify all case-control or cross-sectional studies that evaluated associations between the ENPP1K121Q polymorphism and DKD. Pooled odds ratios (OR) and 95% confidence intervals (95% CI) were calculated for allele contrast, additive, dominant and recessive inheritance models. Seven studies were eligible for inclusion in the meta-analysis, providing data on 3571 type 1 or type 2 diabetic patients (1606 cases with DKD and 1965 diabetic controls without this complication). No significant heterogeneity was observed among the studies included in the meta-analysis when assuming different inheritance models (I² < 50% or P > 0.10 for the entire sample and after stratification by ethnicity). Meta-analysis results revealed significant associations between the K121Q polymorphism and risk of DKD in Asians and Europeans when assuming the different inheritance models analyzed. The most powerful association was observed for the additive model (OR = 1.74, 95% CI 1.27-2.38 for the total sample). In conclusion, the present meta-analysis detected a significant association between the ENPP1K121Q polymorphism and increased susceptibility of DKD in European and Asian populations.
Diabetic kidney disease (DKD) is a chronic complication of diabetes mellitus, which is considered a worldwide epidemic. Several studies have been developed in order to elucidate possible genetic factors involved in this disease. The FRMD3 gene, a strong candidate selected from genome wide association studies (GWAS), encodes the structural protein 4.1O involved in maintaining cell shape and integrity. Some single nucleotide polymorphisms (SNPs) located in FRMD3 have been associated with DKD in different ethnicities. However, despite these findings, the matter is still controversial. The aim of this narrative review is to summarize the evidence regarding the role of FRMD3 in DKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.