The specter of a return to an era in which infectious disease looms as a significant threat to human health is not just hyperbole; there are serious concerns about the widespread overuse and misuse of antibiotics contributing to increased antibiotic resistance in pathogens. The recent discovery of a new enzyme, first identified in Klebsiella pneumoniae from a patient from New Delhi and denoted as NDM-1, represents an example of extreme promiscuity: It hydrolyzes and inactivates nearly all known β-lactam-based antibiotics with startling efficiency. NDM-1 can utilize different metal cofactors and seems to exploit an alternative mechanism based on the reaction conditions. Here we report the results of a combined experimental and theoretical study that examines the substrate, metal binding, and catalytic mechanism of the enzyme. We utilize structures obtained through X-ray crystallography, biochemical assays, and numerical simulation to construct a model of the enzyme catalytic pathway. The NDM-1 enzyme interacts with the substrate solely through zinc, or other metals, bound in the active site, explaining the observed lack of specificity against a broad range of β-lactam antibiotic agents. The zinc ions also serve to activate a water molecule that hydrolyzes the β-lactam ring through a proton shuttle.
Here, we report the 1.53-Å crystal structure of the enzyme 7-cyano-7-deazaguanine reductase (QueF) from Vibrio cholerae, which is responsible for the complete reduction of a nitrile (C≡N) bond to a primary amine (H2C–NH2). At present, this is the only example of a biological pathway that includes reduction of a nitrile bond, establishing QueF as particularly noteworthy. The structure of the QueF monomer resembles two connected ferrodoxin-like domains that assemble into dimers. Ligands identified in the crystal structure suggest the likely binding conformation of the native substrates NADPH and 7-cyano-7-deazaguanine. We also report on a series of numerical simulations that have shed light on the mechanism by which this enzyme affects the transfer of four protons (and electrons) to the 7-cyano-7-deazaguanine substrate. In particular, the simulations suggest that the initial step of the catalytic process is the formation of a covalent adduct with the residue Cys194, in agreement with previous studies. The crystal structure also suggests that two conserved residues (His233 and Asp102) play an important role in the delivery of a fourth proton to the substrate.
Hypothesis: The level of cervical spinal cord injury (CSCI) can be used to predict the need for a cardiovascular intervention. Design: Retrospective review. Data included level of spinal cord injury, Injury Severity Score, lowest heart rate, and systolic blood pressure in the first 24 hours and intensive care unit course. The level of CSCI was divided into high (cord level C1-C5) or low (cord level C6-C7). Neurogenic shock was defined as bradycardia with hypotension. Statistical analysis was performed with the t test and the 2 test. Setting: Level I trauma center.
Unstable cervical spine ligamentous injury without fracture is a rare occurrence. The cervical spine may be cleared after a normal cervical spine series (plain radiograph and computed tomographic scan) as recommended in the 1998 Eastern Association for the Surgery of Trauma guidelines. If dynamic fluoroscopy is to be used, adherence to the protocol, including review of the cervical spine radiographs before fluoroscopy and visualization of the entire cervical spine, C1-T1, is mandatory to ensure patient safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.