The fatty acyl composition of phospholipids determines the biophysical character of membranes and impacts the function of membrane proteins. Here we define a nuclear receptor pathway for the dynamic modulation of membrane composition in response to changes in cellular lipid metabolism. Ligand activation of LXR preferentially drives the incorporation of polyunsaturated fatty acids into phospholipids through induction of the remodeling enzyme Lpcat3. Promotion of Lpcat3 activity ameliorates ER stress induced by saturated free fatty acids in vitro or by obesity and hepatic lipid accumulation in vivo. Conversely, Lpcat3 knockdown in liver exacerbates ER stress and inflammation. Mechanistically, Lpcat3 modulates inflammation both by regulating c-Src and JNK kinase activation through changes in membrane composition and by affecting substrate availability for inflammatory mediator production. These results outline an endogenous mechanism for the preservation of membrane homeostasis during lipid stress and identify Lpcat3 as an important mediator of LXRs effects on metabolism.
Summary
Phospholipids are important determinants of membrane biophysical properties, but the impact of membrane acyl chain composition on dietary lipid absorption is unknown. Here we demonstrate that the LXR-responsive phospholipid-remodeling enzyme Lpcat3 modulates intestinal fatty acid and cholesterol absorption and is required for survival on a high-fat diet. Mice lacking Lpcat3 in the intestine thrive on carbohydrate-based chow, but lose body weight rapidly and become moribund on a triglyceride-rich diet. Lpcat3-dependent incorporation of polyunsaturated fatty acids into phospholipids is required for the efficient transport of dietary lipids into enterocytes. Furthermore, loss of Lpcat3 amplifies the production of gut hormones including GLP-1 and oleoylethanolamide in response to high-fat feeding, contributing to the paradoxical cessation of food intake in the setting of starvation. These results reveal that membrane phospholipid composition is a gating factor in passive lipid absorption, and implicate LXR-Lpcat3 signaling in a gut-brain feedback loop that couples absorption to food intake.
Endothelial dysfunction is a hallmark of multiple inflammatory diseases. Leukocyte interactions with the endothelium have significant effects on vascular wall biology and pathophysiology. Myeloperoxidase (MPO)-derived oxidant products released from leukocytes are potential mediators of inflammation and endothelial dysfunction. 2-Chlorofatty acids (2-ClFAs) are produced as a result of MPO-derived HOCl targeting plasmalogen phospholipids. Chlorinated lipids have been shown to be associated with multiple inflammatory diseases, but their impact on surrounding endothelial cells has not been examined. This study tested the biological properties of the 2-ClFA molecular species 2-chlorohexadecanoic acid (2-ClHA) on endothelial cells. A synthetic alkyne analog of 2-ClHA, 2-chlorohexadec-15-ynoic acid (2-ClHyA), was used to examine the subcellular localization of 2-ClFA in human coronary artery endothelial cells. Click chemistry experiments revealed that 2-ClHyA localizes to Weibel-Palade bodies. 2-ClHA and 2-ClHyA promote the release of P-selectin, von Willebrand factor, and angiopoietin-2 from endothelial cells. Functionally, 2-ClHA and 2-ClHyA cause neutrophils to adhere to and platelets to aggregate on the endothelium, as well as increase permeability of the endothelial barrier which has been tied to the release of angiopoietin-2. These findings suggest that 2-ClFAs promote endothelial cell dysfunction, which may lead to broad implications in inflammation, thrombosis, and blood vessel stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.