Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20–50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.
Citation: Garcia TY, Gutierrez M, Reynolds J, Lamba DA. Modeling the dynamic AMD-associated chronic oxidative stress changes in human ESC and iPSC-derived RPE cells. Invest Ophthalmol Vis Sci. 2015;56:7480-7488. DOI:10.1167/iovs.15-17251 PURPOSE. Here we use human embryonic stem cells (hESCs) and human-induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells to model chronic oxidative stress in vitro. This model allows us to understand the evolution of chronic stress response in RPE in vivo, as well as to monitor microRNAs changes. Finally, we use this in vitro model to identify a partial agonist of NRF2 that is protective against reactive oxygen species (ROS)-induced cytotoxicity.METHODS. The hESCs and hiPSCs were differentiated toward an RPE fate. Upon maturation, RPE cells were subjected to chronic oxidative stress using Paraquat (PQ). The cells were then analyzed using immunocytochemistry and quantitative RT-PCR to look for changes in gene expression and microRNA changes. Small molecules targeting NRF2 pathways were utilized to look for protection against oxidative stress-induced apoptosis.RESULTS. We show that 160 lM PQ can be used to generate a model of chronic oxidative stress in RPE cells derived from hESCs and hiPSCs. Using this model, we characterize the NRF2 pathway effectors during the early and late stages of chronic oxidative stress and identify microRNAs changes during oxidative stress. We find that hsa-miR144 modulates NRF2 activity during ROS stress. Lastly, we found a small molecule modulator of NRF2 that plays a protective role against oxidative stress-induced RPE apoptosis.CONCLUSIONS. In summary, pluripotent stem cell-derived retinal cells can be used to model retinal diseases in a dish. This can provide an unprecedented opportunity to understand the evolution of disease processes and allow us to identify novel therapeutics.Keywords: age-related macular degeneration, disease modeling, oxidative stress, microRNA, NRF2 A ge-related macular degeneration (AMD) is the leading cause of worldwide blindness in the elderly, affecting almost 15 million people in the United States. Retinal changes associated with AMD are present in approximately 10% of people over 65 years of age and as many as one in three people over the age of 80 years. Although the disease was first described in the 1800s, its etiology remains poorly understood, and multiple factors may be involved in the progression of the disorder, including chronic oxidative stress. A number of studies have associated oxidative stress as the key driver to AMD.1,2 The retina is one of the tissues with the greatest consumption of oxygen in the body. 3 This results in significant production of reactive oxygen species (ROS) in the retinal pigment epithelium (RPE). Increasing age results in the loss of ability to deal with this excessive ROS, which leads to oxidative damage.There are no known effective forms of treatment for the common dry form of AMD. This likely is due to the complex multifactorial etiology of AMD and...
Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice.
Mutations and copy number variants of the CUB and Sushi multiple domains 2 ( CSMD2 ) gene are associated with neuropsychiatric disease. CSMD2 encodes a single-pass transmembrane protein with a large extracellular domain comprising repeats of CUB and Sushi domains. High expression of CSMD2 in the developing and mature brain suggests possible roles in neuron development or function, but the cellular functions of CSMD2 are not known. In this study, we show that mouse Csmd2 is expressed in excitatory and inhibitory neurons in the forebrain. Csmd2 protein exhibits a somatodendritic localization in the neocortex and hippocampus, with smaller puncta localizing to the neuropil. Using immunohistochemical and biochemical methods, we demonstrate that Csmd2 localizes to dendritic spines and is enriched in the postsynaptic density (PSD). Accordingly, we show that the cytoplasmic tail domain of Csmd2 interacts with synaptic scaffolding proteins of the membrane-associated guanylate kinase (MAGUK) family. The association between Csmd2 and MAGUK member PSD-95 is dependent on a PDZ-binding domain on the Csmd2 tail, which is also required for synaptic targeting of Csmd2. Finally, we show that knock-down of Csmd2 expression in hippocampal neuron cultures results in reduced complexity of dendritic arbors and deficits in dendritic spine density. Knock-down of Csmd2 in immature developing neurons results in reduced filopodia density, whereas Csmd2 knock-down in mature neurons causes significant reductions in dendritic spine density and dendrite complexity. Together, these results point toward a function for Csmd2 in development and maintenance of dendrites and synapses, which may account for its association with certain psychiatric disorders.
Heterozygous, missense mutations in a- or b-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here we focus on two mutations at the valine 409 residue of TUBA1A, V409I and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.