For cancer cells to survive during extracellular matrix (ECM) detachment, they must inhibit anoikis and rectify metabolic deficiencies that cause non-apoptotic cell death. Previous studies in ECM-detached cells have linked non-apoptotic cell death to reactive oxygen species (ROS) generation, although the mechanistic underpinnings of this link remain poorly defined. Here, we uncover a role for receptor-interacting protein kinase 1 (RIPK1) in the modulation of ROS and cell viability during ECM detachment. We find that RIPK1 activation during ECM detachment results in mitophagy induction through a mechanism dependent on the mitochondrial phosphatase PGAM5. As a consequence of mitophagy, ECM-detached cells experience diminished NADPH production in the mitochondria, and the subsequent elevation in ROS levels leads to non-apoptotic death. Furthermore, we find that antagonizing RIPK1/PGAM5 enhances tumour formation in vivo. Thus, RIPK1-mediated induction of mitophagy may be an efficacious target for therapeutics aimed at eliminating ECM-detached cancer cells.
Abstract:Non-transformed cells that become detached from the extracellular matrix (ECM) undergo dysregulation of redox homeostasis and cell death. In contrast, cancer cells often acquire the ability to mitigate programmed cell death pathways and recalibrate the redox balance to survive after ECM detachment, facilitating metastatic dissemination. Accordingly, recent studies of the mechanisms by which cancer cells overcome ECM detachment-induced metabolic alterations have focused on mechanisms in redox homeostasis. The insights into these mechanisms may inform the development of therapeutics that manipulate redox homeostasis to eliminate ECMdetached cancer cells. Here, we review how ECM-detached cancer cells balance redox metabolism for survival.
Introduction:
Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.
For cancer cells to survive during extracellular matrix (ECM)-detachment, they must inhibit anoikis and rectify metabolic deficiencies that lead to the induction of non-apoptotic cell death. Here, we highlight and discuss our recent study implicating receptor-interacting protein kinase-1 (RIPK1) in the induction of mitophagy, the production of reactive oxygen species (ROS) and the consequent elimination of ECM-detached cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.