The majority of marine populations are demographically open; their replenishment is largely or exclusively dependent on a supply of juveniles from the plankton. In spite of much recent research, no consensus has yet been reached regarding the importance of recruitment relative to other demographic processes in determining local population densities. We argue 1. that demographic theory suggests that, except under restrictive and unlikely conditions, recruitment must influence local population density to some extent. Therefore, 2. the question as to whether the size of a particular population is limited by recruitment is misguided. Finally, 3. the effect of recruitment on population size can be difficult to detect but is nonetheless real. A major weakness of most existing studies is a lack of attention to the survival of recruits over appropriate scales of time and space. Acknowledgment of the multifactorial determination of population density should guide the design of future experimental studies of the demography of open populations.
The value of big old fat fecund female fish (BOFFFFs) in fostering stock productivity and stability has long been underappreciated by conventional fisheries science and management, although Hjort (1914) indirectly alluded to the importance of maternal effects. Compared with smaller mature females, BOFFFFs in a broad variety of marine and freshwater teleosts produce far more and often larger eggs that may develop into larvae that grow faster and withstand starvation better. As (if not more) importantly, BOFFFFs in batch-spawning species tend to have earlier and longer spawning seasons and may spawn in different locations than smaller females. Such features indicate that BOFFFFs are major agents of bet-hedging strategies that help to ensure individual reproductive success in environments that vary tremendously in time and space. Even if all else were equal, BOFFFFs can outlive periods that are unfavourable for successful reproduction and be ready to spawn profusely and enhance recruitment when favourable conditions return (the storage effect). Fishing differentially removes BOFFFFs, typically resulting in severe truncation of the size and age structure of the population. In the worst cases, fishing mortality acts as a powerful selective agent that inhibits reversal of size and age truncation, even if fishing intensity is later reduced. Age truncation is now known to destabilize fished populations, increasing their susceptibility to collapse. Although some fisheries models are beginning to incorporate maternal and other old-growth effects, most continue to treat all spawning-stock biomass as identical: many small young females are assumed to contribute the same to stock productivity as an equivalent mass of BOFFFFs. A growing body of knowledge dictates that fisheries productivity and stability would be enhanced if management conserved old-growth age structure in fished stocks, be it by limiting exploitation rates, by implementing slot limits, or by establishing marine reserves, which are now known to seed surrounding fished areas via larval dispersal. Networks of marine reserves are likely to be the most effective means of ensuring that pockets of old-growth age structure survive throughout the geographic range of demersal species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.