Most honey bee (Apis mellifera Linnaeus, 1758) (Hymenoptera: Apidae) colonies in the United States have been exposed to the beekeeper-applied miticides amitraz, coumaphos, and tau-fluvalinate. Colonies are also often exposed to agrochemicals, which bees encounter on foraging trips. These and other lipophilic pesticides bind to the beeswax matrix of comb, exposing developing bees. We explored whether queen-rearing beeswax containing pesticides affects the reproductive health of mated queens. We predicted that queens reared in pesticide-free beeswax would have higher mating frequencies and sperm viability of stored sperm compared with queens reared in wax containing pesticides. Mating frequency and sperm viability are two traditional measurements associated with queen reproductive health. To test these hypotheses, we reared queens in beeswax-coated cups that were pesticide free or contained field-relevant concentrations of 1) amitraz, 2) a combination of tau-fluvalinate and coumaphos, or 3) a combination of the agrochemicals chlorothalonil and chlorpyrifos. We then collected queens once they mated to determine sperm viability, using a dual fluorescent cell counter, and mating frequency, genotyping immature worker offspring at eight polymorphic microsatellite loci. Sperm viability did not differ between control queens and those reared in pesticide-laden wax. However, queens exposed to amitraz during development exhibited higher mating frequency than queens reared in pesticide-free beeswax or beeswax containing the other pesticide combinations. Our results suggest that miticide exposure during development affects queen mating frequency but not sperm viability, at least in newly mated queens. This finding, which has practical implications for commercial queen rearing and overall colony health, calls for further study.
One of the major goals of ecology is to understand how co-habiting species partition limited resources. In the eastern U.S., at least three species of Reticulitermes subterranean termites often occur in sympatry; however, little is known about how these species divide food resources. In this study, we characterized the foraging activity of Reticulitermes flavipes (Kollar), R. hageni Banks, and R. virginicus (Banks) across seasons to assess the impact of environmental conditions on resource partitioning. A field site consisting of two grids of wooden monitors was sampled monthly for 28 months. Foraging activity in all three species was correlated with the interaction of temperature and moisture. This correlation was influenced by temperature and moisture approximately equally in R. flavipes, whereas temperature contributed more to the correlation in R. hageni, and moisture contributed more in R. virginicus. These differences caused each species to preferentially forage during specific environmental conditions: R. flavipes continued foraging after high moisture events, R. hageni increased foraging under higher soil moisture, and R. virginicus increased foraging under lower soil temperatures. We attempted to explain these patterns by the species’ physiological limits; however, we found no differences in upper lethal limit, desiccation, or submersion limits across species. These results add to the overall understanding of resource partitioning by emphasizing the ability of multiple species to utilize the same resource under different environmental conditions and raise questions regarding the physiological and/or behavioral mechanisms involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.