Alzheimer' s disease (AD) is commonly, not always, associated with insulin-resistant, hyperinsulinemic, and obesity/type-2-diabetic (O/T2D) states. Partial deficiencies of brain insulin receptor (IR) indeed occur in both O/T2D-AD and human AD, but these deficiencies can be bypassed by hyperinsulinemia, which activates atypical protein kinase C (aPKC) and β-secretase, increases Aβ-peptide and phospho-thr-231-tau levels, and induces memory impairments; importantly, these aberrations are reversed by reduction of liver/aPKC-dependent hyperinsulinemia or direct blockade of brain aPKC. New evidence shows that aPKC acts via nuclear factor kappa-B to increase β-secretase mRNA/protein levels in brain, where β-secretase acts on both β-amyloid precursor protein to increase AD risk and IR to limit beneficial (aPKC independent) insulin effects, particularly in normo/hypoinsulinemic AD, and liver, where β-secretase acts on IR to initiate or abet development of insulin resistance and compensatory hyperinsulinemia
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.