During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km
2
of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes.
The processes responsible for land surface subsidence in the Mississippi Delta (MD) have been vigorously debated. Numerous studies have postulated a dominant role for isostatic subsidence associated with sediment loading. Previous computational modeling of present-day vertical land motion has been carried out in order to understand geodetic data. While the magnitudes of these measured rates have been reproduced, the model parameter values required have often been extreme and, in some cases, unrealistic. In contrast, subsidence rates in the MD on the 10 3 year timescale due to delta loading estimated from relative sea level reconstructions are an order of magnitude lower. In an attempt to resolve this conflict, a sensitivity analysis was carried out using a spherically symmetric viscoelastic solid Earth deformation model with sediment, ice, and ocean load histories. The model results were compared with geologic and geodetic observations that provide a record of vertical land motion over three distinctly different timescales (past 80 kyr, past 7 kyr, and past~15 years). It was found that glacial isostatic adjustment is likely to be the dominant contributor to vertical motion of the Pleistocene and underlying basement. Present-day basement subsidence rates solely due to sediment loading are found to be less than~0.5 mm yr À1 . The analysis supports previous suggestions in the literature that Earth rheology parameters are time dependent. Specifically, the effective elastic thickness of the lithosphere may be <50 km on a 10 5 year timescale, but closer to 100 km over 10 3 to 10 4 year timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.