We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts;(2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end-of-season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50-64%. Model initial conditions and management information accounted for Abbreviations: APSIM, Agricultural Production Systems sIMulator; RRMSE, relative root mean square error.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. one-fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R 2 = 0.88), root depth (R 2 = 0.83), biomass production (R 2 = 0.93), grain yield (R 2 = 0.90), plant N uptake (R 2 = 0.87), soil moisture (R 2 = 0.42), soil temperature (R 2 = 0.93), soil nitrate (R 2 = 0.77), and water table depth (R 2 = 0.41). We concluded that model set-up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment. Neil Huth from CSIRO for their support with the APSIM model, Iowa State University students () for assistance with data collection and managing the field experiments. We also thank the APSIM Initiative for making the software publicly available and for ensuring software quality. ORCIDSotirios V. Archontoulis https://orcid.org/0000-0001-7595-8107 Mark A. Licht https://orcid.org/0000-0001-6640-7856 Kendall R. Lamkey
Soybean [Glycine max (L.) Merr.] seed composition and yield are a function of genetics (G), environment (E), and management (M) practices, but contribution of each factor to seed composition and yield are not well understood. The goal of this synthesis-analysis was to identify the main effects of G, E, and M factors on seed composition (protein and oil concentration) and yield. The entire dataset (13,574 data points) consisted of 21 studies conducted across the United States (US) between 2002 and 2017 with varying treatments and all reporting seed yield and composition. Environment (E), defined as site-year, was the dominant factor accounting for more than 70% of the variation for both seed composition and yield. Of the crop management factors: (i) delayed planting date decreased oil concentration by 0.007 to 0.06% per delayed week (R2∼0.70) and a 0.01 to 0.04 Mg ha-1 decline in seed yield per week, mainly in northern latitudes (40–45 N); (ii) crop rotation (corn-soybean) resulted in an overall positive impact for both seed composition and yield (1.60 Mg ha-1 positive yield difference relative to continuous soybean); and (iii) other management practices such as no-till, seed treatment, foliar nutrient application, and fungicide showed mixed results. Fertilizer N application in lower quantities (10–50 kg N ha-1) increased both oil and protein concentration, but seed yield was improved with rates above 100 kg N ha-1. At southern latitudes (30–35 N), trends of reduction in oil and increases in protein concentrations with later maturity groups (MG, from 3 to 7) was found. Continuing coordinated research is critical to advance our understanding of G × E × M interactions.
Unfavorable weather conditions frequently cause farmers to plant maize (Zea mays L.) outside the optimum planting timeframe. We analyzed maize yield and phenology from a multilocation, year, hybrid relative maturity, and planting date experiment performed in Iowa, USA. Our objectives were to determine the optimum combination of planting date and relative maturity to maximize maize grain yield per environment and to elucidate the risk associated with the use of "full-season hybrids" when planting occurs beyond the optimum planting date. Analysis of variance (ANOVA) attributed 70% of the variability in grain yield to planting date and only 10% to relative maturity indicating that short and full-season hybrid relative maturities produced similar grain yields regardless of when they were planted as long as the crops reached maturity before harvesting. Our analysis indicated time to silking is a good indication of expected yield potential with a critical time (beyond which yield is reduced) to be 23 July for Iowa. Furthermore, we found that a minimum growing degree accumulation of 648°Cday during the grain-filling period maximized maize yield. Overall, this study brings new results to assist decision making regarding planting date by hybrid relative maturity across Iowa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.